Advertisement

Cellular and Molecular Neurobiology

, Volume 38, Issue 3, pp 735–745 | Cite as

Role of Peroxiredoxin 2 in the Protection Against Ferrous Sulfate-Induced Oxidative and Inflammatory Injury in PC12 Cells

  • Wenzhe Xu
  • Feng LiEmail author
  • Zhenkuan Xu
  • Bin Sun
  • Jingwei Cao
  • Yuguang LiuEmail author
Original Research

Abstract

Peroxiredoxin 2 (Prdx2) is a ubiquitous antioxidant enzyme in mammalian brain. Although a protective role of Prdx2 has been established in cerebral ischemia and several neurodegenerative diseases, its contribution against iron-induced neurocytotoxicity still remains to be determined. Accordingly, in this study, we aimed to investigate the effects of Prdx2 on iron-induced cytotoxicity using an in vitro model in which PC12 cells are exposed to ferrous sulfate (FS). The FS treatment increased Prdx2 expression, and promoted lactate dehydrogenase (LDH) release and cell apoptosis in PC12 cells, accompanied by the increase in the Bax/Bcl2 ratio, cytochrome c release, and caspase-3 cleavage. FS exposure also increased the malondialdehyde content (lipid peroxidation), 3′-nitrotyrosine expression (protein nitration), γ-H2A.X formation (DNA oxidation), and promoted nuclear factor kappa B nuclear translocation, cyclooxygenase-2 expression, and release of tumor necrosis factor-α and interleukin-1β. Lentivirus-mediated Prdx2 knockdown intensified the FS-induced LDH release and cell apoptosis by aggravating the oxidative and inflammatory damage. In conclusion, our findings demonstrated that Prdx2 played a vital role in the protection against iron-induced cytotoxicity in PC12 cells.

Keywords

Peroxiredoxin 2 Iron toxicity Oxidative stress Inflammatory response Apoptosis 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81301127 and 81401867), the China Postdoctoral Science Foundation (2014T70661 and 2014M560562) and the Key Research and Development Program of Shandong Province (2015GSF118095).

Author Contributions

YL and FL conceived and designed the experiments; WX, ZX, BS and JC performed the experiments; WX and ZX analyzed the data; WX and FL wrote the paper.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10571_2017_540_MOESM1_ESM.pdf (190 kb)
Supplementary material 1 (PDF 190 kb)

References

  1. Bain NT, Madan P, Betts DH (2013) Elevated p66Shc is associated with intracellular redox imbalance in developmentally compromised bovine embryos. Mol Reprod Dev 80:22–34. doi: 10.1002/mrd.22128 CrossRefPubMedGoogle Scholar
  2. Beard JL, Connor JR, Jones BC (1993) Iron in the brain. Nutr Rev 51:157–170CrossRefPubMedGoogle Scholar
  3. Berg D, Youdim MB (2006) Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 17:5–17. doi: 10.1097/01.rmr.0000245461.90406.ad CrossRefPubMedGoogle Scholar
  4. Billen LP, Kokoski CL, Lovell JF, Leber B, Andrews DW (2008) Bcl-XL inhibits membrane permeabilization by competing with Bax. PLoS Biol 6:e147. doi: 10.1371/journal.pbio.0060147 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ceriello A (2002) Nitrotyrosine: new findings as a marker of postprandial oxidative stress. Int J Clin Pract Suppl 129:51–58Google Scholar
  6. Chang CH, Chen HX, Yu G, Peng CC, Peng RY (2014) Curcumin-protected PC12 cells against glutamate-induced oxidative toxicity. Food Technol Biotechnol 52:468–478. doi: 10.17113/ftb.52.04.14.3622 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen J, Regan RF (2004) Heme oxygenase-2 gene deletion increases astrocyte vulnerability to hemin. Biochem Biophys Res Commun 318:88–94. doi: 10.1016/j.bbrc.2004.03.187 CrossRefPubMedGoogle Scholar
  8. Chen VT, Huang CL, Lee YC, Liao WC, Huang NK (2010) The roles of the thioredoxin system and peroxiredoxins in 1-methyl-4-phenyl-pyridinium ion-induced cytotoxicity in rat pheochromocytoma cells. Toxicol Vitro 24:1577–1583. doi: 10.1016/j.tiv.2010.06.010 CrossRefGoogle Scholar
  9. Chen L, Na R, Ran Q (2014) Enhanced defense against mitochondrial hydrogen peroxide attenuates age-associated cognition decline. Neurobiol Aging 35:2552–2561. doi: 10.1016/j.neurobiolaging.2014.05.007 CrossRefPubMedGoogle Scholar
  10. Cheng B, Guo Y, Li C, Ji B, Pan Y, Chen J, Bai B (2014) Edaravone protected PC12 cells against MPP(+)-cytoxicity via inhibiting oxidative stress and up-regulating heme oxygenase-1 expression. J Neurol Sci 343:115–119. doi: 10.1016/j.jns.2014.05.051 CrossRefPubMedGoogle Scholar
  11. Chen-Roetling J, Chen L, Regan RF (2009) Minocycline attenuates iron neurotoxicity in cortical cell cultures. Biochem Biophys Res Commun 386:322–326. doi: 10.1016/j.bbrc.2009.06.026 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22:8590–8607. doi: 10.1038/sj.onc.1207102 CrossRefPubMedGoogle Scholar
  13. Crowe SL, Movsesyan VA, Jorgensen TJ, Kondratyev A (2006) Rapid phosphorylation of histone H2A.X following ionotropic glutamate receptor activation. Eur J Neurosci 23:2351–2361. doi: 10.1111/j.1460-9568.2006.04768.x CrossRefPubMedPubMedCentralGoogle Scholar
  14. De Franceschi L, Bertoldi M, Matte A, Santos Franco S, Pantaleo A, Ferru E, Turrini F (2013) Oxidative stress and beta-thalassemic erythroid cells behind the molecular defect. Oxid Med Cell Longev 2013:985210. doi: 10.1155/2013/985210 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328. doi: 10.1016/j.numecd.2005.05.003 CrossRefPubMedGoogle Scholar
  16. Dixon SJ et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072. doi: 10.1016/j.cell.2012.03.042 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fang J, Nakamura T, Cho DH, Gu Z, Lipton SA (2007) S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson’s disease. Proc Natl Acad Sci USA 104:18742–18747. doi: 10.1073/pnas.0705904104 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Guo M, Li D, Shen H, Jin B, Ren Y, Li M, Xing Y (2016) Leptin-sensitive JAK2 activation in the regulation of tau phosphorylation in PC12 cells. Neurosignals 24:88–94. doi: 10.1159/000442615 CrossRefPubMedGoogle Scholar
  19. Halestrap AP, Doran E, Gillespie JP, O’Toole A (2000) Mitochondria and cell death. Biochem Soc Trans 28:170–177CrossRefPubMedGoogle Scholar
  20. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716CrossRefPubMedGoogle Scholar
  21. Harper VM et al (2015) Peroxiredoxin-2 recycling is inhibited during erythrocyte storage. Antioxid Redox Signal 22:294–307. doi: 10.1089/ars.2014.5950 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hu X et al (2011) Peroxiredoxin-2 protects against 6-hydroxydopamine-induced dopaminergic neurodegeneration via attenuation of the apoptosis signal-regulating kinase (ASK1) signaling cascade. J Neurosci 31:247–261. doi: 10.1523/JNEUROSCI.4589-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Huang Z (2000) Bcl-2 family proteins as targets for anticancer drug design. Oncogene 19:6627–6631. doi: 10.1038/sj.onc.1204087 CrossRefPubMedGoogle Scholar
  24. Hulet SW, Hess EJ, Debinski W, Arosio P, Bruce K, Powers S, Connor JR (1999) Characterization and distribution of ferritin binding sites in the adult mouse brain. J Neurochem 72:868–874CrossRefPubMedGoogle Scholar
  25. Kim IK, Lee KJ, Rhee S, Seo SB, Pak JH (2013) Protective effects of peroxiredoxin 6 overexpression on amyloid beta-induced apoptosis in PC12 cells. Free Radic Res 47:836–846. doi: 10.3109/10715762.2013.833330 CrossRefPubMedGoogle Scholar
  26. Kisucka J et al (2008) Peroxiredoxin1 prevents excessive endothelial activation and early atherosclerosis. Circ Res 103:598–605. doi: 10.1161/CIRCRESAHA.108.174870 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Koh JY, Choi DW (1987) Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods 20:83–90CrossRefPubMedGoogle Scholar
  28. Leak RK et al (2013) Peroxiredoxin 2 battles poly(ADP-ribose) polymerase 1- and p53-dependent prodeath pathways after ischemic injury. Stroke 44:1124–1134. doi: 10.1161/STROKEAHA.111.680157 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lee TH et al (2003) Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood 101:5033–5038. doi: 10.1182/blood-2002-08-2548 CrossRefPubMedGoogle Scholar
  30. Li XS, Li S, Kellermann G (2015) A novel mixed-mode solid phase extraction coupled with LC-MS/MS for the re-evaluation of free 3-nitrotyrosine in human plasma as an oxidative stress biomarker. Talanta 140:45–51. doi: 10.1016/j.talanta.2015.02.053 CrossRefPubMedGoogle Scholar
  31. Liu Q, Kou JP, Yu BY (2011) Ginsenoside Rg1 protects against hydrogen peroxide-induced cell death in PC12 cells via inhibiting NF-kappaB activation. Neurochem Int 58:119–125. doi: 10.1016/j.neuint.2010.11.004 CrossRefPubMedGoogle Scholar
  32. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. doi: 10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  33. Low FM, Hampton MB, Winterbourn CC (2008) Peroxiredoxin 2 and peroxide metabolism in the erythrocyte. Antioxid Redox Signal 10:1621–1630. doi: 10.1089/ars.2008.2081 CrossRefPubMedGoogle Scholar
  34. Mohanty JG, Nagababu E, Friedman JS, Rifkind JM (2013) SOD2 deficiency in hematopoietic cells in mice results in reduced red blood cell deformability and increased heme degradation. Exp Hematol 41:316–321. doi: 10.1016/j.exphem.2012.10.017 CrossRefPubMedGoogle Scholar
  35. Nusshold C et al (2010) Hypochlorite modification of sphingomyelin generates chlorinated lipid species that induce apoptosis and proteome alterations in dopaminergic PC12 neurons in vitro. Free Radic Biol Med 48:1588–1600. doi: 10.1016/j.freeradbiomed.2010.02.037 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619CrossRefPubMedGoogle Scholar
  37. Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517:311–320. doi: 10.1038/nature14191 CrossRefPubMedGoogle Scholar
  38. Pitts A et al (2012) Dithiol-based compounds maintain expression of antioxidant protein peroxiredoxin 1 that counteracts toxicity of mutant huntingtin. J Biol Chem 287:22717–22729. doi: 10.1074/jbc.M111.334565 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pratico D (2001) In vivo measurement of the redox state. Lipids 36(Suppl):S45–S47CrossRefPubMedGoogle Scholar
  40. Schmitz ML, Baeuerle PA (1995) Multi-step activation of NF-kappa B/Rel transcription factors. Immunobiology 193:116–127CrossRefPubMedGoogle Scholar
  41. Schreck R, Albermann K, Baeuerle PA (1992) Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun 17:221–237CrossRefPubMedGoogle Scholar
  42. Sen R, Baltimore D (1986) Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 47:921–928CrossRefPubMedGoogle Scholar
  43. Takadera T, Koriyama Y, Kimura T, Kato S (2011) 5-S-GAD attenuates Fe(2) + -induced lipid peroxidation and cell death in a neuronal cell model. Neurotox Res 20:26–31. doi: 10.1007/s12640-010-9218-7 CrossRefPubMedGoogle Scholar
  44. Thompson KJ, Shoham S, Connor JR (2001) Iron and neurodegenerative disorders. Brain Res Bull 55:155–164CrossRefPubMedGoogle Scholar
  45. Winterbourn CC (1995) Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett 82–83:969–974CrossRefPubMedGoogle Scholar
  46. Woo HA, Yim SH, Shin DH, Kang D, Yu DY, Rhee SG (2010) Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling. Cell 140:517–528. doi: 10.1016/j.cell.2010.01.009 CrossRefPubMedGoogle Scholar
  47. Wood ZA, Schroder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40CrossRefPubMedGoogle Scholar
  48. Xu W, Li F, Xu Z, Sun B, Cao J, Liu Y (2017) Tert-butylhydroquinone protects PC12 cells against ferrous sulfate-induced oxidative and inflammatory injury via the Nrf2/ARE pathway. Chem Biol Interact 273:28–36. doi: 10.1016/j.cbi.2017.05.021 CrossRefPubMedGoogle Scholar
  49. Yang CS et al (2007) Roles of peroxiredoxin II in the regulation of proinflammatory responses to LPS and protection against endotoxin-induced lethal shock. J Exp Med 204:583–594. doi: 10.1084/jem.20061849 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yao J et al (2007) Interaction of amyloid binding alcohol dehydrogenase/Abeta mediates up-regulation of peroxiredoxin II in the brains of Alzheimer’s disease patients and a transgenic Alzheimer’s disease mouse model. Mol Cell Neurosci 35:377–382. doi: 10.1016/j.mcn.2007.03.013 CrossRefPubMedGoogle Scholar
  51. Zhu S, Zhang Q, Sun X, Zeh HJ 3rd, Lotze MT, Kang R, Tang D (2017) HSPA5 regulates ferroptotic cell death in cancer cells. Cancer Res 77:2064–2077. doi: 10.1158/0008-5472.CAN-16-1979 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of NeurosurgeryQilu Hospital and Brain Science Research Institute of Shandong UniversityJinanPeople’s Republic of China

Personalised recommendations