Advertisement

Cellular and Molecular Neurobiology

, Volume 38, Issue 3, pp 669–677 | Cite as

MiR-338-5p Promotes Glioma Cell Invasion by Regulating TSHZ3 and MMP2

  • Yanyan Li
  • Yulun Huang
  • Zhenyu Qi
  • Ting Sun
  • Youxin ZhouEmail author
Original Research

Abstract

This study was designed to examine differential expression of miR-338-5p in gliomas and the role of miR-338-5p in glioma cell invasion via its potential target gene TSHZ3 encoding Teashirt zinc finger homobox 3, predicted by bioinformatics, and matrix metallopeptidase 2 (MMP2), the key pro-invasive protease overexpressed in gliomas. Quantitative real-time reverse transcription PCR (qRT-PCR) and Spearman correlation analysis were used to determine differential expressions of miR-338-5p and TSHZ3 in astrocytic gliomas of different grades (n = 35) and glioblastoma cell lines (U87 and U251) in comparison to non-neoplastic brain (NNB) tissues (n = 6). Western blotting was used to determine the protein levels of TSHZ3 and MMP2 in glioblastoma cell lines and Matrigel invasion assay to examine the role of miR-338-5p in cell invasiveness. The results showed that the expression of miR-338-5p, normalized to hsnRNA U6, was significantly higher in grade III and IV gliomas and glioblastoma cell lines compared to that in NNB and grade II gliomas, whereas TSHZ3 expression, normalized to GAPDH, was inversely related to miR-338-5p (R = −0.636, P < 0.01). Luciferase assays showed TSHZ3 to be a target gene of miR-338-5p. In both U87 and U251 cells, miR-338-5p mimics increased MMP2 and invasiveness of the cells. Overexpression of ectopic TSHZ3 suppressed the cell invasiveness and attenuated the pro-invasive effect of miR-338-5p mimics. Overall, our results showed that miR-338-5p has a function in promoting glioma cell invasion by targeting TSHZ3 suppression on MMP2. In conclusion, miR-338-5p is a possible potential biomarker for the diagnosis and target for therapy of high-grade glioma.

Keywords

Glioma MiR-338-5p TSHZ3 MMP2 Invasion 

Notes

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. NSFC81372689), the Foundation of the Health Department in Jiangsu Province (Grant No. K201106) and the Foundation of the Chinese Anti-cancer Association (CSNO-2013-MSD009).

References

  1. Bjorklund M, Koivunen E (2005) Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta 1755(1):37–69. doi: 10.1016/j.bbcan.2005.03.001 PubMedGoogle Scholar
  2. Caubit X, Lye CM, Martin E, Core N, Long DA, Vola C, Jenkins D, Garratt AN, Skaer H, Woolf AS, Fasano L (2008) Teashirt 3 is necessary for ureteral smooth muscle differentiation downstream of SHH and BMP4. Development 135(19):3301–3310. doi: 10.1242/dev.022442 CrossRefPubMedGoogle Scholar
  3. Caubit X, Thoby-Brisson M, Voituron N, Filippi P, Bevengut M, Faralli H, Zanella S, Fortin G, Hilaire G, Fasano L (2010) Teashirt 3 regulates development of neurons involved in both respiratory rhythm and airflow control. J Neurosci 30(28):9465–9476. doi: 10.1523/JNEUROSCI.1765-10.2010 CrossRefPubMedGoogle Scholar
  4. Chang H, Kim N, Park JH, Nam RH, Choi YJ, Lee HS, Yoon H, Shin CM, Park YS, Kim JM, Lee DH (2015) Different microRNA expression levels in gastric cancer depending on helicobacter pylori infection. Gut Liver 9(2):188–196. doi: 10.5009/gnl13371 CrossRefPubMedGoogle Scholar
  5. Chen Y, Chen J, Liu Y, Li S, Huang P (2015) Plasma miR-15b-5p, miR-338-5p, and miR-764 as biomarkers for hepatocellular carcinoma. Med Sci Monit 21:1864–1871. doi: 10.12659/MSM.893082 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chetty C, Lakka SS, Bhoopathi P, Rao JS (2010) MMP-2 alters VEGF expression via alphaVbeta3 integrin-mediated PI3 K/AKT signaling in A549 lung cancer cells. Int J Cancer 127(5):1081–1095. doi: 10.1002/ijc.25134 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Du R, Petritsch C, Lu K, Liu P, Haller A, Ganss R, Song H, Vandenberg S, Bergers G (2008) Matrix metalloproteinase-2 regulates vascular patterning and growth affecting tumor cell survival and invasion in GBM. Neuro Oncol 10(3):254–264. doi: 10.1215/15228517-2008-001 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Faralli H, Martin E, Core N, Liu QC, Filippi P, Dilworth FJ, Caubit X, Fasano L (2011) Teashirt-3, a novel regulator of muscle differentiation, associates with BRG1-associated factor 57 (BAF57) to inhibit myogenin gene expression. J Biol Chem 286(26):23498–23510. doi: 10.1074/jbc.M110.206003 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fasano L, Roder L, Core N, Alexandre E, Vola C, Jacq B, Kerridge S (1991) The gene teashirt is required for the development of Drosophila embryonic trunk segments and encodes a protein with widely spaced zinc finger motifs. Cell 64(1):63–79CrossRefPubMedGoogle Scholar
  10. Huang Y, Mao H, Zhao X, Baxter P, Zhou Y, Wang Z, Li X-N (2012) Micro-RNA signature of glioblastoma multiforme invasion: an in vivo study in patient-tumor derived orthotopic xenograft mouse models. Cancer Res 72(Suppl 8):489CrossRefGoogle Scholar
  11. Jenkins D, Caubit X, Dimovski A, Matevska N, Lye CM, Cabuk F, Gucev Z, Tasic V, Fasano L, Woolf AS (2010) Analysis of TSHZ2 and TSHZ3 genes in congenital pelvi-ureteric junction obstruction. Nephrol Dial Transplant 25(1):54–60. doi: 10.1093/ndt/gfp453 CrossRefPubMedGoogle Scholar
  12. Kajiwara Y, Akram A, Katsel P, Haroutunian V, Schmeidler J, Beecham G, Haines JL, Pericak-Vance MA, Buxbaum JD (2009) FE65 binds Teashirt, inhibiting expression of the primate-specific caspase-4. PLoS ONE 4(4):e5071. doi: 10.1371/journal.pone.0005071 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kondraganti S, Mohanam S, Chintala SK, Kin Y, Jasti SL, Nirmala C, Lakka SS, Adachi Y, Kyritsis AP, Ali-Osman F, Sawaya R, Fuller GN, Rao JS (2000) Selective suppression of matrix metalloproteinase-9 in human glioblastoma cells by antisense gene transfer impairs glioblastoma cell invasion. Cancer Res 60(24):6851–6855PubMedGoogle Scholar
  14. Kunishio K, Okada M, Matsumoto Y, Nagao S (2003) Matrix metalloproteinase-2 and -9 expression in astrocytic tumors. Brain Tumor Pathol 20(2):39–45CrossRefPubMedGoogle Scholar
  15. Liu C, Liang S, Xiao S, Lin Q, Chen X, Wu Y, Fu J (2015) MicroRNA-27b inhibits Spry2 expression and promotes cell invasion in glioma U251 cells. Oncol Lett 9(3):1393–1397. doi: 10.3892/ol.2015.2865 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Mayes DA, Hu Y, Teng Y, Siegel E, Wu X, Panda K, Tan F, Yung WK, Zhou YH (2006) PAX6 suppresses the invasiveness of glioblastoma cells and the expression of the matrix metalloproteinase-2 gene. Cancer Res 66(20):9809–9817. doi: 10.1158/0008-5472.CAN-05-3877 CrossRefPubMedGoogle Scholar
  17. McBride DJ, Etemadmoghadam D, Cooke SL, Alsop K, George J, Butler A, Cho J, Galappaththige D, Greenman C, Howarth KD, Lau KW, Ng CK, Raine K, Teague J, Wedge DC, Cancer Study Group AO, Caubit X, Stratton MR, Brenton JD, Campbell PJ, Futreal PA, Bowtell DD (2012) Tandem duplication of chromosomal segments is common in ovarian and breast cancer genomes. J Pathol 227(4):446–455. doi: 10.1002/path.4042 CrossRefPubMedPubMedCentralGoogle Scholar
  18. McCawley LJ, Matrisian LM (2001) Tumor progression: defining the soil round the tumor seed. Curr Biol 11(1):R25–R27CrossRefPubMedGoogle Scholar
  19. Natrajan R, Mackay A, Wilkerson PM, Lambros MB, Wetterskog D, Arnedos M, Shiu KK, Geyer FC, Langerod A, Kreike B, Reyal F, Horlings HM, van de Vijver MJ, Palacios J, Weigelt B, Reis-Filho JS (2012) Functional characterization of the 19q12 amplicon in grade III breast cancers. Breast Cancer Res 14(2):R53. doi: 10.1186/bcr3154 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Noel A, Gilles C, Bajou K, Devy L, Kebers F, Lewalle JM, Maquoi E, Munaut C, Remacle A, Foidart JM (1997) Emerging roles for proteinases in cancer. Invasion Metastasis 17(5):221–239PubMedGoogle Scholar
  21. Peng Y, Yu S, Li H, Xiang H, Peng J, Jiang S (2014) MicroRNAs: emerging roles in adipogenesis and obesity. Cell Signal 26(9):1888–1896. doi: 10.1016/j.cellsig.2014.05.006 CrossRefPubMedGoogle Scholar
  22. Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3(7):489–501. doi: 10.1038/nrc1121 CrossRefPubMedGoogle Scholar
  23. Reifenberger G, Collins VP (2004) Pathology and molecular genetics of astrocytic gliomas. J Mol Med (Berl) 82(10):656–670. doi: 10.1007/s00109-004-0564-x CrossRefGoogle Scholar
  24. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M (1994) A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370(6484):61–65CrossRefPubMedGoogle Scholar
  25. Takei Y, Ohnishi N, Kisaka M, Mihara K (2014) Determination of abnormally expressed microRNAs in bone marrow smears from patients with follicular lymphomas. SpringerPlus 3:288. doi: 10.1186/2193-1801-3-288 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Tarassishin L, Lee SC (2013) Interferon regulatory factor 3 alters glioma inflammatory and invasive properties. J Neurooncol 113(2):185–194. doi: 10.1007/s11060-013-1109-3 CrossRefPubMedGoogle Scholar
  27. Wild-Bode C, Weller M, Wick W (2001) Molecular determinants of glioma cell migration and invasion. J Neurosurg 94(6):978–984. doi: 10.3171/jns.2001.94.6.0978 CrossRefPubMedGoogle Scholar
  28. Yamamoto M, Cid E, Bru S, Yamamoto F (2011) Rare and frequent promoter methylation, respectively, of TSHZ2 and 3 genes that are both downregulated in expression in breast and prostate cancers. PLoS ONE 6(3):e17149. doi: 10.1371/journal.pone.0017149 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Yang TQ, Lu XJ, Wu TF, Ding DD, Zhao ZH, Chen GL, Xie XS, Li B, Wei YX, Guo LC, Zhang Y, Huang YL, Zhou YX, Du ZW (2014) MicroRNA-16 inhibits glioma cell growth and invasion through suppression of BCL2 and the nuclear factor-kappaB1/MMP9 signaling pathway. Cancer Sci 105(3):265–271. doi: 10.1111/cas.12351 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Yin F, Zhang JN, Wang SW, Zhou CH, Zhao MM, Fan WH, Fan M, Liu S (2015) MiR-125a-3p regulates glioma apoptosis and invasion by regulating Nrg1. PLoS ONE 10(1):e0116759. doi: 10.1371/journal.pone.0116759 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Yong FL, Law CW, Wang CW (2013) Potentiality of a triple microRNA classifier: miR-193a-3p, miR-23a and miR-338-5p for early detection of colorectal cancer. BMC cancer 13:280. doi: 10.1186/1471-2407-13-280 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Zhou YH, Hess KR, Liu L, Linskey ME, Yung WK (2005) Modeling prognosis for patients with malignant astrocytic gliomas: quantifying the expression of multiple genetic markers and clinical variables. Neuro Oncol 7(4):485–494CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Neurosurgery and Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina

Personalised recommendations