Skip to main content

Advertisement

Log in

Exploration of Involved Key Genes and Signaling Diversity in Brain Tumors

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Brain tumors are becoming a major cause of death. The classification of brain tumors has gone through restructuring with regard to some criteria such as the presence or absence of a specific genetic alteration in the 2016 central nervous system World Health Organization update. Two categories of genes with a leading role in tumorigenesis and cancer induction include tumor suppressor genes and oncogenes; tumor suppressor genes are inactivated through a variety of mechanisms that result in their loss of function. As for the oncogenes, overexpression and amplification are the most common mechanisms of alteration. Important cell cycle genes such as p53, ATM, cyclin D2, and Rb have shown altered expression patterns in different brain tumors such as meningioma and astrocytoma. Some genes in signaling pathways have a role in brain tumorigenesis. These pathways include hedgehog, EGFR, Notch, hippo, MAPK, PI3K/Akt, and WNT signaling. It has been shown that telomere length in some brain tumor samples is shortened compared to that in normal cells. As the shortening of telomere length triggers chromosome instability early in brain tumors, it could lead to initiation of cancer. On the other hand, telomerase activity was positive in some brain tumors. It is suggestive that telomere length and telomerase activity are important diagnostic markers in brain tumors. This review focuses on brain tumors with regard to the status of oncogenes, tumor suppressors, cell cycle genes, and genes in signaling pathways as well as the role of telomere length and telomerase in brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2-CA:

2-Chloro-adenosine

2-CdA:

2-Chloro-2′-deoxyadenosine

ALP:

Alkaline phosphatases

ALT:

Alternative lengthening of telomeres

Apyrase:

Adenyl-pyrophosphatase

ATM:

Ataxia telangiectasia mutated

ATP:

Adenosine 5′-triphosphate

ATRX:

Alpha thalassemia/mental retardation syndrome X-linked

bHLH:

Basic helix-turn-helix

CD39:

Ectonucleoside triphosphate diphosphohydrolase-1

CD73:

Ecto-5′-nucleotidase

CNS:

Central nervous system

CSC:

Cancer stem cell

D-2HG:

D2-hydroxyglutarate

DAG:

Diacylglycerol

DAXX:

Death-domain associated protein

DDR:

DNA damage response

DHH:

Desert hedgehog

E-NPPases:

Ectonucleoside pyrophosphatase/phosphodiesterases

E-NTPDases:

Ectonucleoside triphosphate diphosphohydrolases

EAE:

Experimental autoimmune encephalomyelitis

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial-to-mesenchymal transition

EPL:

Early progenitor-like

GBM:

Glioblastoma multiform

G-CIMP:

Glioma-CpG island methylator phenotype

GSK-3β:

Glycogen synthase kinase 3 beta

HIF:

Hypoxia-inducible factor

HTERT:

Human telomerase reverse transcriptase

IHC:

Immunohistochemistry

IHH:

Indian hedgehog

IL-6:

Interleukin-6

IL-8:

Interleukin-8

IP3:

Inositol-1,4,5-triphosphate

LOH:

Loss of heterozygosity

MB:

Medulloblastoma

MBEN:

Medulloblastoma with extensive nodularity

MET:

Mesenchymal-to-epithelial transition

MMP2:

Matrix metalloproteinase-2

MMP9:

Matrix metalloproteinase-9

NB:

Neuroblastic

PET:

Positron emission tomography

PDGF:

Platelet-derived growth factor

PDGFR:

Platelet-derived growth factor receptor

PG:

Pre-glioblastoma

PHDs:

Prolyl hydroxylase domain proteins

PIP2 :

Phosphatidylinositol 4,5-bisphosphate

PIP3 :

Phosphatidylinositol 3,4,5-trisphosphate

PKA:

Protein kinase A

PKB:

Protein kinase B

PKC:

Protein kinase C

PLGG:

Pediatric low-grade glioblastoma

Q-FISH:

Quantitative fluorescent in situ hybridization

RT-PCR:

Reverse transcription polymerase chain reaction

sHGG:

Secondary high-grade glioblastoma

SHH:

Sonic hedgehog

SMO:

Smoothened

SUFU:

Suppressor of fused homolog

TCF/LEF:

T-cell factor/lymphoid enhancer factor

TNFα:

Tumor necrosis factor alpha

TMZ:

Temozolomide

TRAP assay:

Telomeric repeat amplification protocol assay

TRF:

Terminal restriction fragment

WHO:

World Health Organization

YAP1:

Yes-associated protein 1

α-KG:

α-Ketoglutarate

References

  • Aldosari N, Bigner SH, Burger PC, Becker L, Kepner JL, Friedman HS, McLendon RE (2002) MYCC and MYCN oncogene amplification in medulloblastoma. A fluorescence in situ hybridization study on paraffin sections from the Children’s Oncology Group. Arch Pathol Lab Med 126:540–544. doi:10.1043/0003-9985(2002)126<0540:mamoai>2.0.co;2

    PubMed  Google Scholar 

  • Alessi DR, Kozlowski MT, Weng Q-P, Morrice N, Avruch J (1998) 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr Biol 8:69–81

    Article  CAS  PubMed  Google Scholar 

  • Antonelli M, Buttarelli FR, Giangaspero F (2014) Histopathology and molecular pathology of medulloblastoma. In: The medulloblastoma book. Nova Science Publishers, Inc., New York, p 13–25

  • Bagchi A, Papazoglu C, Wu Y, Capurso D, Brodt M, Francis D, Bredel M, Vogel H, Mills AA (2007) CHD5 is a tumor suppressor at human 1p36. Cell 128:459–475. doi:10.1016/j.cell.2006.11.052

    Article  CAS  PubMed  Google Scholar 

  • Bai X, Ma D, Liu A, Shen X, Wang QJ, Liu Y, Jiang Y (2007) Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 318:977–980

    Article  CAS  PubMed  Google Scholar 

  • Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116:597–602. doi:10.1007/s00401-008-0455-2

    Article  CAS  PubMed  Google Scholar 

  • Bellail AC, Olson JJ, Hao C (2014) SUMO1 modification stabilizes CDK6 protein and drives the cell cycle and glioblastoma progression. Nat Commun. doi:10.1038/ncomms5234

    PubMed  PubMed Central  Google Scholar 

  • Bijlsma MF, Borensztajn KS, Roelink H, Peppelenbosch MP, Spek CA (2007) Sonic hedgehog induces transcription-independent cytoskeletal rearrangement and migration regulated by arachidonate metabolites. Cell Signal 19:2596–2604

    Article  CAS  PubMed  Google Scholar 

  • Birchmeier C, Sharma S, Wigler M (1987) Expression and rearrangement of the ROS1 gene in human glioblastoma cells. Proc Natl Acad Sci USA 84:9270–9274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bögler O, Su Huang HJ, Kleihues P, Cavenee WK (1995) The p53 gene and its role in human brain tumors. Glia 15:308–327

    Article  PubMed  Google Scholar 

  • Bond GL, Hu W, Levine AJ (2005) MDM2 is a central node in the p53 pathway: 12 years and counting. Curr Cancer Drug Targets 5:3–8

    Article  CAS  PubMed  Google Scholar 

  • Braganhol E, Wink MR, Lenz G, Battastini AMO (2013) Purinergic signaling in glioma progression. In: Glioma signaling. Springer, p 81–102. doi:10.1007/978-94-007-4719-7_5

  • Brazil DP, Park J, Hemmings BA (2002) PKB binding proteins: getting in on the Akt. Cell 111:293–303

    Article  CAS  PubMed  Google Scholar 

  • Briggs KJ et al (2008) Cooperation between the Hic1 and Ptch1 tumor suppressors in medulloblastoma. Genes Dev 22:770–785. doi:10.1101/gad.1640908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G, Di Virgilio F (2013) Purinergic signalling and cancer. Purinergic Signal 9:491–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Büschges R, Weber RG, Actor B, Lichter P, Collins VP, Reifenberger G (1999) Amplification and expression of cyclin D genes (CCND1, CCND2 and CCND3) in human malignant gliomas. Brain Pathol (Zur Switz) 9:435–442; discussion 432–433

  • Cabuy E, De Ridder L (2001) Telomerase activity and expression of telomerase reverse transcriptase correlated with cell proliferation in meningiomas and malignant brain tumors in vivo. Virchows Arch 439:176–184

    Article  CAS  PubMed  Google Scholar 

  • Carrasco-Garcia E, Saceda M, Martinez-Lacaci I (2014) Role of receptor tyrosine kinases and their ligands in glioblastoma. Cells 3:199–235. doi:10.3390/cells3020199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellino RC, Durden DL (2007) Mechanisms of disease: the PI3K–Akt–PTEN signaling node—an intercept point for the control of angiogenesis in brain tumors. Nat Clin Pract Neurol 3:682–693

    Article  CAS  PubMed  Google Scholar 

  • Ceruti S, Abbracchio MP (2013) Adenosine signaling in glioma cells. In: Glioma signaling. Springer, p 13–30. doi:10.1007/978-94-007-4719-7_2

  • Chen J, McKay RM, Parada LF (2012) Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 149:36–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Zhang Y, Yang J, Hagan JP, Li M (2013) Vertebrate animal models of glioma: understanding the mechanisms and developing new therapies. Biochim Biophys Acta Rev Cancer 1836:158–165

    Article  CAS  Google Scholar 

  • Chen Y-H, Gianino SM, Gutmann DH (2015) Neurofibromatosis-1 regulation of neural stem cell proliferation and multilineage differentiation operates through distinct RAS effector pathways. Genes Dev 29:1677–1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chosdol K, Misra A, Puri S, Srivastava T, Chattopadhyay P, Sarkar C, Mahapatra AK, Sinha S (2009) Frequent loss of heterozygosity and altered expression of the candidate tumor suppressor gene ‘FAT’ in human astrocytic tumors. BMC Cancer 9:5. doi:10.1186/1471-2407-9-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collins VP (1993) Amplified genes in human gliomas. Semin Cancer Biol 4:27–32

    CAS  PubMed  Google Scholar 

  • Collins VP (2004) Brain tumours: classification and genes. J Neurol Neurosurg Psychiatry 75:ii2–ii11

    Article  PubMed  PubMed Central  Google Scholar 

  • Costello JF, Plass C, Arap W, Chapman VM, Held WA, Berger MS, Huang HS, Cavenee WK (1997) Cyclin-dependent kinase 6 (CDK6) amplification in human gliomas identified using two-dimensional separation of genomic DNA. Cancer Res 57:1250–1254

    CAS  PubMed  Google Scholar 

  • Croce CM (2008) Oncogenes and cancer. N Engl J Med 358:502–511

    Article  CAS  PubMed  Google Scholar 

  • Dahiya N, Yu J, Kaul A, Leonard JR, Gutmann DH (2012) Novel BRAF alteration in a sporadic pilocytic astrocytoma. Case Rep Med. doi:10.1155/2012/418672

    PubMed  PubMed Central  Google Scholar 

  • de la Iglesia N, Konopka G, Puram SV, Chan JA, Bachoo RM, You MJ, Levy DE, Depinho RA, Bonni A (2008) Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway. Genes Dev 22:449–462. doi:10.1101/gad.1606508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Virgilio F, Adinolfi E (2016) Extracellular purines, purinergic receptors and tumor growth. Oncogene. doi:10.1038/onc.2016.206

    PubMed  PubMed Central  Google Scholar 

  • Diehl JA, Cheng M, Roussel MF, Sherr CJ (1998) Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12:3499–3511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drachsler M, Kleber S, Mateos A, Volk K, Mohr N, Chen S, Cirovic B, Tüttenberg J, Gieffers C, Sykora J, Wirtz CR (2016) CD95 maintains stem cell-like and non-classical EMT programs in primary human glioblastoma cells. Cell Death Dis 7:e2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubuc AM, Northcott PA, Mack S, Witt H, Pfister S, Taylor MD (2010) The genetics of pediatric brain tumors. Curr Neurol Neurosci Rep 10:215–223. doi:10.1007/s11910-010-0103-9

    Article  CAS  PubMed  Google Scholar 

  • Duffner PK, Krischer JP, Sanford RA, Horowitz ME, Burger PC, Cohen ME, Friedman HS, Kun LE (1998) Prognostic factors in infants and very young children with intracranial ependymomas. Pediatr Neurosurg 28:215–222

    Article  CAS  PubMed  Google Scholar 

  • Ellison DW (2010) Childhood medulloblastoma: novel approaches to the classification of a heterogeneous disease. Acta Neuropathol 120:305–316

    Article  PubMed  Google Scholar 

  • Endersby R, Baker SJ (2008) PTEN signaling in brain: neuropathology and tumorigenesis. Oncogene 27:5416–5430. doi:10.1038/onc.2008.239

    Article  CAS  PubMed  Google Scholar 

  • Eyler CE, Foo WC, LaFiura KM, McLendon RE, Hjelmeland AB, Rich JN (2008) Brain cancer stem cells display preferential sensitivity to Akt inhibition. Stem Cells 26:3027–3036. doi:10.1634/stemcells.2007-1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fakharzadeh S, Trusko SP, George DL (1991) Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J 10:1565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falchetti ML, Pallini R, Larocca LM, Verna R, D’Ambrosio E (1999) Telomerase expression in intracranial tumours: prognostic potential for malignant gliomas and meningiomas. J Clin Pathol 52:234–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falchetti M, Larocca L, Pallini R (2002) Telomerase in brain tumors. Child’s Nerv Syst 18:112–117

    Article  CAS  Google Scholar 

  • Fan X, Mikolaenko I, Elhassan I, Ni X, Wang Y, Ball D, Brat DJ, Perry A, Eberhart CG (2004) Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res 64:7787–7793

    Article  CAS  PubMed  Google Scholar 

  • Fernandez LA, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S, Taylor MD, Kenney AM (2009) YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev 23:2729–2741

    Article  CAS  Google Scholar 

  • Franke T (2008) PI3K/Akt: getting it right matters. Oncogene 27:6473–6488

    Article  CAS  PubMed  Google Scholar 

  • Frappart PO, Lee Y, Lamont J, McKinnon PJ (2007) BRCA2 is required for neurogenesis and suppression of medulloblastoma. EMBO J 26:2732–2742. doi:10.1038/sj.emboj.7601703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaiano N, Nye JS, Fishell G (2000) Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26:395–404

    Article  CAS  PubMed  Google Scholar 

  • Garkavtsev I, Kozin SV, Chernova O, Xu L, Winkler F, Brown E, Barnett GH, Jain RK (2004) The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature 428:328–332. doi:10.1038/nature02329

    Article  CAS  PubMed  Google Scholar 

  • Gasco M, Shami S, Crook T (2002) The p53 pathway in breast cancer. Breast Cancer Res 4:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgescu M-M (2010) PTEN tumor suppressor network in PI3K-Akt pathway control. Genes Cancer 1:1170–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil GA, Silvestre DC, Tomasini N, Bussolino DF, Caputto BL (2012) Controlling cytoplasmic c-Fos controls tumor growth in the peripheral and central nervous system. Neurochem Res 37:1364–1371. doi:10.1007/s11064-012-0763-8

    Article  CAS  PubMed  Google Scholar 

  • Goodenberger ML, Jenkins RB (2012) Genetics of adult glioma. Cancer Genet 205:613–621

    Article  CAS  PubMed  Google Scholar 

  • Gorovets D, Kannan K, Shen R, Kastenhuber ER, Islamdoust N, Campos C, Pentsova E, Heguy A, Jhanwar SC, Mellinghoff IK, Chan TA (2012) IDH mutation and neuroglial developmental features define clinically distinct subclasses of lower grade diffuse astrocytic glioma. Clin Cancer Res 18:2490–2501

    Article  CAS  PubMed  Google Scholar 

  • Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22

    Article  CAS  PubMed  Google Scholar 

  • Guessous F, Zhang Y, diPierro C, Marcinkiewicz L, Sarkaria J, Schiff D, Buchanan S, Abounader R (2010) An orally bioavailable c-Met kinase inhibitor potently inhibits brain tumor malignancy and growth. Anticancer Agents Med Chem 10:28–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutmann DH, Donahoe J, Brown T, James CD, Perry A (2000) Loss of neurofibromatosis 1 (NF1) gene expression in NF1-associated pilocytic astrocytomas. Neuropathol Appl Neurobiol 26:361–367

    Article  CAS  PubMed  Google Scholar 

  • Hafner C, Schmitz G, Meyer S, Bataille F, Hau P, Langmann T, Dietmaier W, Landthaler M, Vogt T (2004) Differential gene expression of Eph receptors and ephrins in benign human tissues and cancers. Clin Chem 50:490–499. doi:10.1373/clinchem.2003.026849

    Article  CAS  PubMed  Google Scholar 

  • Hambardzumyan D, Squatrito M, Carbajal E, Holland EC (2008) Glioma formation, cancer stem cells, and akt signaling. Stem Cell Rev 4:203–210

    Article  CAS  PubMed  Google Scholar 

  • Hansen MF, Cavenee WK (1988) Tumor suppressors: recessive mutations that lead to cancer. Cell 53:172–173

    Article  CAS  Google Scholar 

  • Harris H (1988) The analysis of malignancy by cell fusion: the position in 1988. Cancer Res 48:3302–3306

    CAS  PubMed  Google Scholar 

  • Hatanpaa KJ, Burma S, Zhao D, Habib AA (2010) Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia 12:675–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Häyry V, Tanner M, Blom T, Tynninen O, Roselli A, Ollikainen M, Sariola H, Wartiovaara K, Nupponen NN (2008) Copy number alterations of the polycomb gene BMI1 in gliomas. Acta Neuropathol 116:97–102. doi:10.1007/s00401-008-0376-0

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Mir G, McGeachy MJ (2017) CD73 is expressed by inflammatory Th17 cells in experimental autoimmune encephalomyelitis but does not limit differentiation or pathogenesis. PLoS ONE 12:e0173655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hiraga S, Ohnishi T, Izumoto S, Miyahara E, Kanemura Y, Matsumura H, Arita N (1998) Telomerase activity and alterations in telomere length in human brain tumors. Cancer Res 58:2117–2125

    CAS  PubMed  Google Scholar 

  • Hiyama E, Hiyama K, Yokoyama T, Ichikawa T, Matsuura Y (1992) Length of telomeric repeats in neuroblastoma: correlation with prognosis and other biological characteristics. Jpn J Cancer Res 83:159–164

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi K, Tomizawa Y, Tosaka M, Ishiuchi S, Kurihara H, Mori M, Saito N (2003) Epigenetic inactivation of RASSF1A candidate tumor suppressor gene at 3p21.3 in brain tumors. Oncogene 22:7862–7865. doi:10.1038/sj.onc.1207082

    Article  CAS  PubMed  Google Scholar 

  • Huang SY, Yang J-Y (2015) Targeting the hedgehog pathway in pediatric medulloblastoma. Cancers 7:2110–2123

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang H, Mahler-Araujo BM, Sankila A, Chimelli L, Yonekawa Y, Kleihues P, Ohgaki H (2000) APC mutations in sporadic medulloblastomas. Am J Pathol 156:433–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huttner A (2012) Overview of primary brain tumors: pathologic classification, epidemiology, molecular biology, and prognostic markers. Hematol/Oncol Clin N Am 26:715–732

    Article  Google Scholar 

  • i Altaba AR, Stecca B, Sánchez P (2004) Hedgehog-Gli signaling in brain tumors: stem cells and paradevelopmental programs in cancer. Cancer Lett 204:145–157

    Article  CAS  Google Scholar 

  • Ichimura K, Schmidt EE, Goike HM, Collins VP (1996) Human glioblastomas with no alterations of the CDKN2A (p16INK4A, MTS1) and CDK4 genes have frequent mutations of the retinoblastoma gene. Oncogene 13:1065–1072

    CAS  PubMed  Google Scholar 

  • Irvin DK, Zurcher SD, Nguyen T, Weinmaster G, Kornblum HI (2001) Expression patterns of Notch1, Notch2, and Notch3 suggest multiple functional roles for the Notch-DSL signaling system during brain development. J Comp Neurol 436:167–181

    Article  CAS  PubMed  Google Scholar 

  • Iser IC, Pereira MB, Lenz G, Wink MR (2017) The epithelial-to-mesenchymal transition-like process in glioblastoma: an updated systematic review and in silico investigation. Med Res Rev. doi:10.1002/med.21408

    PubMed  Google Scholar 

  • Jeevan DS, Cooper JB, Braun A, Murali R, Jhanwar-Uniyal M (2016) Molecular pathways mediating metastases to the brain via epithelial-to-mesenchymal transition: genes, proteins, and functional analysis. Anticancer Res 36:523–532

    CAS  PubMed  Google Scholar 

  • Jiang B-H, Liu L-Z (2008) PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim Biophys Acta Proteins Proteomics 1784:150–158

    Article  CAS  Google Scholar 

  • Jiang H, Vogt PK (2008) Constitutively active Rheb induces oncogenic transformation. Oncogene 27:5729–5740. doi:10.1038/onc.2008.180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • John P (2012) Brain tumor classification using wavelet and texture based neural network. Int J Sci Eng Res 3(10):1

    Google Scholar 

  • Jones DT, Kocialkowski S, Liu L, Pearson DM, Ichimura K, Collins VP (2009) Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene 28:2119–2123. doi:10.1038/onc.2009.73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanno H, Kondo K, Ito S, Yamamoto I, Fujii S, Torigoe S, Sakai N, Hosaka M, Shuin T, Yao M (1994) Somatic mutations of the von Hippel-Lindau tumor suppressor gene in sporadic central nervous system hemangioblastomas. Cancer Res 54:4845–4847

    CAS  PubMed  Google Scholar 

  • Kheirollahi M, Mehr-Azin M, Kamalian N, Mehdipour P (2011a) Expression of cyclin D2, P53, Rb and ATM cell cycle genes in brain tumors. Med Oncol 28:7–14

    Article  CAS  PubMed  Google Scholar 

  • Kheirollahi M, Mehrazin M, Kamalian N, Mehdipour P (2011b) Alterations of telomere length in human brain tumors. Med Oncol 28:864–870

    Article  PubMed  Google Scholar 

  • Kheirollahi M, Mehrazin M, Kamalian N, Mohammadi-asl J, Mehdipour P (2013) Telomerase activity in human brain tumors: astrocytoma and meningioma. Cell Mol Neurobiol 33:569–574. doi:10.1007/s10571-013-9923-x

    Article  CAS  PubMed  Google Scholar 

  • Killela PJ, Reitman ZJ, Jiao Y, Bettegowda C, Agrawal N, Diaz LA, Friedman AH, Friedman H, Gallia GL, Giovanella BC, Grollman AP (2013) TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci USA 110:6021–6026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinzler KW, Bigner SH, Bigner DD, Trent JM, Law ML, O’Brien SJ, Wong AJ, Vogelstein B (1987) Identification of an amplified, highly expressed gene in a human glioma. Science 236:70–73

    Article  CAS  PubMed  Google Scholar 

  • Kleihues P, Ohgaki H (1999) Primary and secondary glioblastomas: from concept to clinical diagnosis. Neurooncology 1:44–51

    CAS  Google Scholar 

  • Knobbe CB, Reifenberger J, Reifenberger G (2004) Mutation analysis of the Ras pathway genes NRAS, HRAS, KRAS and BRAF in glioblastomas. Acta Neuropathol 108:467–470. doi:10.1007/s00401-004-0929-9

    Article  CAS  PubMed  Google Scholar 

  • Knobbe C, Trampe-Kieslich A, Reifenberger G (2005) Genetic alteration and expression of the phosphoinositol-3-kinase/Akt pathway genes PIK3CA and PIKE in human glioblastomas. Neuropathol Appl Neurobiol 31:486–490

    Article  CAS  PubMed  Google Scholar 

  • Koch A, Waha A, Tonn JC, Sörensen N, Berthold F, Wolter M, Reifenberger J, Hartmann W, Friedl W, Reifenberger G, Wiestler OD (2001) Somatic mutations of WNT/wingless signaling pathway components in primitive neuroectodermal tumors. Int J Cancer 93:445–449

    Article  CAS  PubMed  Google Scholar 

  • Kool M, Jones DT, Jäger N, Northcott PA, Pugh TJ, Hovestadt V, Piro RM, Esparza LA, Markant SL, Remke M, Milde T (2014) Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell 25:393–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurose K, Gilley K, Matsumoto S, Watson PH, Zhou X-P, Eng C (2002) Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet 32:355–357

    Article  CAS  PubMed  Google Scholar 

  • Kyritsis AP, Saya H (1993) Epidemiology, cytogenetics, and molecular biology of brain tumors. Curr Opin Oncol 5:474–480

    Article  CAS  PubMed  Google Scholar 

  • Langford LA, Piatyszek MA, Shay J, Schold SC (1995) Telomerase activity in human brain tumours. Lancet 346:1267–1268

    Article  CAS  PubMed  Google Scholar 

  • Li D-M, Sun H (1998) PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc Natl Acad Sci USA 95:15406–15411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Tergaonkar V (2016) Telomerase reactivation in cancers: mechanisms that govern transcriptional activation of the wild-type vs. mutant TERT promoters. Transcription 7:44–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JJ, Liu DP, Liu GT, Xie D (2009) EphrinA5 acts as a tumor suppressor in glioma by negative regulation of epidermal growth factor receptor. Oncogene 28:1759–1768. doi:10.1038/onc.2009.15

    Article  CAS  PubMed  Google Scholar 

  • Liberzon E, Avigad S, Cohen IJ, Yaniv I, Michovitz S, Zaizov R (2003) ATM gene mutations are not involved in medulloblastoma in children. Cancer Genet Cytogenet 146:167–169

    Article  CAS  PubMed  Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109. doi:10.1007/s00401-007-0243-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. doi:10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  • Low KC, Tergaonkar V (2013) Telomerase: central regulator of all of the hallmarks of cancer. Trends Biochem Sci 38:426–434

    Article  CAS  PubMed  Google Scholar 

  • Lusis EA, Watson MA, Chicoine MR, Lyman M, Roerig P, Reifenberger G, Gutmann DH, Perry A (2005) Integrative genomic analysis identifies NDRG2 as a candidate tumor suppressor gene frequently inactivated in clinically aggressive meningioma. Cancer Res 65:7121–7126. doi:10.1158/0008-5472.can-05-0043

    Article  CAS  PubMed  Google Scholar 

  • Mack SC, Taylor MD (2009) The genetic and epigenetic basis of ependymoma. Child’s Nerv Syst 25:1195–1201

    Article  Google Scholar 

  • Majumder S (2006) REST in good times and bad: roles in tumor suppressor and oncogenic activities. Cell Cycle (Georget Tex) 5:1929–1935. doi:10.4161/cc.5.17.2982

    Article  CAS  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mavrakis KJ, Zhu H, Silva RL, Mills JR, Teruya-Feldstein J, Lowe SW, Tam W, Pelletier J, Wendel HG (2008) Tumorigenic activity and therapeutic inhibition of Rheb GTPase. Genes Dev 22:2178–2188. doi:10.1101/gad.1690808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mawrin C, Perry A (2010) Pathological classification and molecular genetics of meningiomas. J Neurooncol 99:379–391. doi:10.1007/s11060-010-0342-2

    Article  CAS  PubMed  Google Scholar 

  • McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM, Olson JJ, Mikkelsen T, Lehman N, Aldape K, Yung WA (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068. doi:10.1038/nature07385

    Article  CAS  Google Scholar 

  • Mehdipour P, Habibi L, Mohammadi-Asl J, Kamalian N, Azin MM (2008) Three-hit hypothesis in astrocytoma: tracing the polymorphism D1853N in ATM gene through a pedigree of the proband affected with primary brain tumor. J Cancer Res Clin Oncol 134:1173–1180

    Article  CAS  PubMed  Google Scholar 

  • Mehdipour P, Kheirollahi M, Mehrazin M, Kamalian N, Atri M (2011) Evolutionary hypothesis of telomere length in primary breast cancer and brain tumour patients: a tracer for genomic-tumour heterogeneity and instability. Cell Biol Int 35:915–925. doi:10.1042/CBI20100560

    Article  PubMed  Google Scholar 

  • Mehdipour P, Karami F, Javan F, Mehrazin M (2015) Linking ATM promoter methylation to cell cycle protein expression in brain tumor patients: cellular molecular triangle correlation in ATM territory. Mol Neurobiol 52:293–302

    Article  CAS  PubMed  Google Scholar 

  • Menghi F, Jacques TS, Barenco M, Schwalbe EC, Clifford SC, Hubank M, Ham J (2011) Genome-wide analysis of alternative splicing in medulloblastoma identifies splicing patterns characteristic of normal cerebellar development. Cancer Res 71:2045–2055. doi:10.1158/0008-5472.can-10-2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller S, Ward JH, Rogers HA, Lowe J, Grundy RG (2013) Loss of INI1 protein expression defines a subgroup of aggressive central nervous system primitive neuroectodermal tumors. Brain Pathol (Zur Switz) 23:19–27. doi:10.1111/j.1750-3639.2012.00610.x

    Article  CAS  Google Scholar 

  • Mistry M, Zhukova N, Merico D, Rakopoulos P, Krishnatry R, Shago M, Stavropoulos J, Alon N, Pole JD, Ray PN, Navickiene V (2015) BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J Clin Oncol 33:1015–1022. doi:10.1200/JCO.2014.58.3922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris LG, Kaufman AM, Gong Y, Ramaswami D, Walsh LA, Turcan Ş, Eng S, Kannan K, Zou Y, Peng L, Banuchi VE, Paty P, Zeng Z, Vakiani E, Solit D, Singh B, Ganly I, Liau L, Cloughesy TC, Mischel PS, Mellinghoff IK, Chan TA (2013) Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nat Genet 45:253–261. doi:10.1038/ng.2538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagane M, Huang SH-J, Cavenee WK (1997) Advances in the molecular genetics of gliomas. Curr Opin Oncol 9:215–222

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto M, Bergemann AD (2002) Diverse roles for the Eph family of receptor tyrosine kinases in carcinogenesis. Microsc Res Tech 59:58–67. doi:10.1002/jemt.10177

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Watanabe T, Klangby U, Asker C, Wiman K, Yonekawa Y, Kleihues P, Ohgaki H (2001) p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain Pathol (Zur Switz) 11:159–168

    Article  CAS  Google Scholar 

  • Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, Hui CC, Clevers H, Dotto GP, Radtke F (2003) Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 33:416–421

    Article  CAS  PubMed  Google Scholar 

  • Nikuševa-Martić T, Beroš V, Pećina-Šlaus N, Pećina HI, Bulić-Jakuš F (2007) Genetic changes of CDH1, APC, and CTNNB1 found in human brain tumors. Pathol Res Pract 203:779–787. doi:10.1016/j.prp.2007.07.009

    Article  PubMed  CAS  Google Scholar 

  • Nonoguchi N, Ohta T, Oh J-E, Kim Y-H, Kleihues P, Ohgaki H (2013) TERT promoter mutations in primary and secondary glioblastomas. Acta Neuropathol 126:931–937

    Article  CAS  PubMed  Google Scholar 

  • Northcott PA, Jones DT, Kool M, Robinson GW, Gilbertson RJ, Cho YJ, Pomeroy SL, Korshunov A, Lichter P, Taylor MD, Pfister SM (2012) Medulloblastomics: the end of the beginning. Nat Rev Cancer 12:818–834. doi:10.1038/nrc3410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohgaki H, Kleihues P (2009) Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci 100:2235–2241. doi:10.1111/j.1349-7006.2009.01308.x

    Article  CAS  PubMed  Google Scholar 

  • Oliveira AM, Ross JS, Fletcher JA (2005) Tumor suppressor genes in breast cancer: the gatekeepers and the caretakers. Am J Clin Pathol 124:S16–S28

    CAS  PubMed  Google Scholar 

  • Oro AE, Higgins KM, Hu Z, Bonifas JM, Epstein EH, Scott MP (1997) Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 276:817–821

    Article  CAS  PubMed  Google Scholar 

  • Orr BA, Bai H, Odia Y, Jain D, Anders RA, Eberhart CG (2011) Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth. J Neuropathol Exp Neurol 70:568–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardali K, Moustakas A (2007) Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochem Biophys Acta 1775:21–62. doi:10.1016/j.bbcan.2006.06.004

    CAS  PubMed  Google Scholar 

  • Parry L, Maynard JH, Patel A, Hodges AK, von Deimling A, Sampson JR, Cheadle JP (2000) Molecular analysis of the TSC1 and TSC2 tumour suppressor genes in sporadic glial and glioneuronal tumours. Hum Genet 107:350–356

    Article  CAS  PubMed  Google Scholar 

  • Perry A, Lusis EA, Gutmann DH (2005) Meningothelial hyperplasia: a detailed clinicopathologic, immunohistochemical and genetic study of 11 cases. Brain Pathol 15:109–115

    Article  PubMed  Google Scholar 

  • Pfister S, Janzarik WG, Remke M, Ernst A, Werft W, Becker N, Toedt G, Wittmann A, Kratz C, Olbrich H, Ahmadi R (2008) BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Investig 118:1739–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradella D, Naro C, Sette C, Ghigna C (2017) EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression. Mol Cancer 16:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Quesnel B, Preudhomme C, Fournier J, Fenaux P, Peyrat J-P (1994) MDM2 gene amplification in human breast cancer. Eur J Cancer 30:982–984

    Article  Google Scholar 

  • Radu A, Neubauer V, Akagi T, Hanafusa H, Georgescu M-M (2003) PTEN induces cell cycle arrest by decreasing the level and nuclear localization of cyclin D1. Mol Cell Biol 23:6139–6149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP (1993) Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res 53:2736–2739

    CAS  PubMed  Google Scholar 

  • Reifenberger G, Ichimura K, Reifenberger J, Elkahloun AG, Meltzer PS, Collins VP (1996) Refined mapping of 12q13–q15 amplicons in human malignant gliomas suggests CDK4/SAS and MDM2 as independent amplification targets. Cancer Res 56:5141–5145

    CAS  PubMed  Google Scholar 

  • Reifenberger J, Wolter M, Weber RG, Megahed M, Ruzicka T, Lichter P, Reifenberger G (1998) Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 58:1798–1803

    CAS  PubMed  Google Scholar 

  • Rich JN, Hans C, Jones B, Iversen ES, McLendon RE, Rasheed BA, Dobra A, Dressman HK, Bigner DD, Nevins JR, West M (2005) Gene expression profiling and genetic markers in glioblastoma survival. Cancer Res 65:4051–4058. doi:10.1158/0008-5472.CAN-04-3936

    Article  CAS  PubMed  Google Scholar 

  • Ruttledge MH, Ruttledge MH, Sarrazin J, Rangaratnam S, Phelan CM, Twist E, Merel P, Delattre O, Thomas G, Nordenskjöld M, Collins VP, Dumanski JP (1994) Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat Genet 6:180–184. doi:10.1038/ng0294-180

    Article  CAS  PubMed  Google Scholar 

  • Sablina AA, Hahn WC (2008) SV40 small T antigen and PP2A phosphatase in cell transformation. Cancer Metastasis Rev 27:137–146. doi:10.1007/s10555-008-9116-0

    Article  CAS  PubMed  Google Scholar 

  • Sallinen SL, Ikonen T, Haapasalo H, Schleutker J (2005) CHEK2 mutations in primary glioblastomas. J Neurooncol 74:93–95. doi:10.1007/s11060-005-5953-7

    Article  PubMed  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Schmidt EE, Ichimura K, Reifenberger G, Collins VP (1994) CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res 54:6321–6324

    CAS  PubMed  Google Scholar 

  • Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR (2000) Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14:2501–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehgal A (1998) Molecular changes during the genesis of human gliomas. Semin Surg Oncol 14:3–12

    Article  CAS  PubMed  Google Scholar 

  • Sharma MK, Zehnbauer BA, Watson MA, Gutmann DH (2005) RAS pathway activation and an oncogenic RAS mutation in sporadic pilocytic astrocytoma. Neurology 65:1335–1336

    Article  PubMed  Google Scholar 

  • Sievert AJ, Lang SS, Boucher KL, Madsen PJ, Slaunwhite E, Choudhari N, Kellet M, Storm PB, Resnick AC (2013) Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas. Proc Natl Acad Sci USA 110:5957–5962. doi:10.1073/pnas.1219232110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva Rd, Marie SK, Uno M, Matushita H, Wakamatsu A, Rosemberg S, Oba-Shinjo SM (2013) CTNNB1, AXIN1 and APC expression analysis of different medulloblastoma variants. Clinics 68:167–172

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonoda Y, Ozawa T, Aldape KD, Deen DF, Berger MS, Pieper RO (2001) Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma. Cancer Res 61:6674–6678

    CAS  PubMed  Google Scholar 

  • Squatrito M, Brennan CW, Helmy K, Huse JT, Petrini JH, Holland EC (2010) Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. Cancer Cell 18:619–629

    Article  CAS  PubMed  Google Scholar 

  • Suva ML, Louis DN (2013) Next-generation molecular genetics of brain tumours. Curr Opin Neurol 26:681–687. doi:10.1097/wco.0000000000000027

    Article  CAS  PubMed  Google Scholar 

  • Swartling FJ (2012) Myc proteins in brain tumor development and maintenance. Upsala J Med Sci 117:122–131. doi:10.3109/03009734.2012.658975

    Article  PubMed  PubMed Central  Google Scholar 

  • Tabouret E, Labussiere M, Alentorn A, Schmitt Y, Marie Y, Sanson M (2015) LRP1B deletion is associated with poor outcome for glioblastoma patients. J Neurol Sci 358:440–443. doi:10.1016/j.jns.2015.09.345

    Article  CAS  PubMed  Google Scholar 

  • Talora C, Sgroi DC, Crum CP, Dotto GP (2002) Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev 16:2252–2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor MD, Liu L, Raffel C, Hui CC, Mainprize TG, Zhang X, Agatep R, Chiappa S, Gao L, Lowrance A, Hao A, Goldstein AM, Stavrou T, Scherer SW, Dura WT, Wainwright B, Squire JA, Rutka JT, Hogg D (2002) Mutations in SUFU predispose to medulloblastoma. Nat Genet 31:306–310. doi:10.1038/ng916

    Article  CAS  PubMed  Google Scholar 

  • Taylor TE, Furnari FB, Cavenee WK (2012) Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance. Curr Cancer Drug Targets 12:197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomczak K, Czerwinska P, Wiznerowicz M (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn) 19:A68–A77. doi:10.5114/wo.2014.47136

    Google Scholar 

  • Veeriah S, Brennan C, Meng S, Singh B, Fagin JA, Solit DB, Paty PB, Rohle D, Vivanco I, Chmielecki J, Pao W, Ladanyi M, Gerald WL, Liau L, Cloughesy TC, Mischel PS, Sander C, Taylor B, Schultz N, Major J, Heguy A, Fang F, Mellinghoff IK, Chan TA (2009) The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers. Proc Natl Acad Sci USA 106:9435–9440. doi:10.1073/pnas.0900571106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viana-Pereira M, Almeida GC, Stavale JN, Malheiro S, Clara C, Lobo P, Pimentel J, Reis RM (2017) Study of hTERT and histone 3 mutations in medulloblastoma. Pathobiol J Immunopathol Mol Cell Biol 84:108–113. doi:10.1159/000448922

    Article  CAS  Google Scholar 

  • Waite KA, Eng C (2002) Protean PTEN: form and function. Am J Hum Genet 70:829–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Wang D, Zhu Z, Wang W, Zhang X, Tang F, Zhou Y, Wang H, Liu M, Yao X, Yan X (2016) The role of extracellular-5′-nucleotidase/CD73 in glioma peritumoural brain edema. Neurol Sci 37:603–611

    Article  PubMed  Google Scholar 

  • Weiss WA (2000) Genetics of brain tumors. Curr Opin Pediatr 12:543–548

    Article  CAS  PubMed  Google Scholar 

  • Weissman BE, Saxon PJ, Jones G, Geiser A, Stanbridge E (1987) Introduction of a normal human chromosome 11 into a Wilms’ tumor cell line controls its tumorigenic expression. Science 236:175–180

    Article  CAS  PubMed  Google Scholar 

  • Welter C, Henn W, Theisinger B, Fischer H, Zang KD, Blin N (1990) The cellular myb oncogene is amplified, rearranged and activated in human glioblastoma cell lines. Cancer Lett 52:57–62

    Article  CAS  PubMed  Google Scholar 

  • Wicking C, Evans T, Henk B, Hayward N, Simms LA, Chenevix-Trench G, Pietsch T, Wainwright B (1998) No evidence for the H133Y mutation in SONIC HEDGEHOG in a collection of common tumour types. Oncogene 16:1091–1093. doi:10.1038/sj.onc.1201644

    Article  CAS  PubMed  Google Scholar 

  • Włodarski P, Grajkowska W, Łojek M, Rainko K, Jóźwiak J (2006) Activation of Akt and Erk pathways in medulloblastoma. Folia Neuropathol 44:214–220

    PubMed  Google Scholar 

  • Yamazaki H, Fukui Y, Ueyama Y, Tamaoki N, Kawamoto T, Taniguchi S, Shibuya M (1988) Amplification of the structurally and functionally altered epidermal growth factor receptor gene (c-erbB) in human brain tumors. Mol Cell Biol 8:1816–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota N, Nishizawa S, Ohta S, Sugimura H, Namba H, Maekawa M (2002) Role of Wnt pathway in medulloblastoma oncogenesis. Int J Cancer 101:198–201

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Deshmukh H, Gutmann RJ, Emnett RJ, Rodriguez FJ, Watson MA, Nagarajan R, Gutmann DH (2009) Alterations of BRAF and HIPK2 loci predominate in sporadic pilocytic astrocytoma. Neurology 73:1526–1531. doi:10.1212/WNL.0b013e3181c0664a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan M, Tomlinson V, Lara R, Holliday D, Chelala C, Harada T, Gangeswaran R, Manson-Bishop C, Smith P, Danovi SA, Pardo O (2008) Yes-associated protein (YAP) functions as a tumor suppressor in breast. Cell Death Differ 15:1752–1759

    Article  CAS  PubMed  Google Scholar 

  • Zbuk KM, Eng C (2007) Hamartomatous polyposis syndromes. Nat Clin Pract Gastroenterol Hepatol 4:492–502

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Acquaviva J, Ramachandran P, Boskovitz A, Woolfenden S, Pfannl R, Bronson RT, Chen JW, Weissleder R, Housman DE, Charest A (2009) Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis. Proc Natl Acad Sci USA 106:2712–2716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zurawel RH, Allen C, Chiappa S, Cato W, Biegel J, Cogen P, de Sauvage F, Raffel C (2000) Analysis of PTCH/SMO/SHH pathway genes in medulloblastoma. Genes Chromosomes Cancer 27:44–51

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvin Mehdipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasser, M.M., Mehdipour, P. Exploration of Involved Key Genes and Signaling Diversity in Brain Tumors. Cell Mol Neurobiol 38, 393–419 (2018). https://doi.org/10.1007/s10571-017-0498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-017-0498-9

Keywords

Navigation