Advertisement

Cellular and Molecular Neurobiology

, Volume 37, Issue 5, pp 817–829 | Cite as

Effects of Alpha-Synuclein on Primary Spinal Cord Neurons Associated with Apoptosis and CNTF Expression

  • Guo-Ying Feng
  • Jia Liu
  • You-Cui Wang
  • Zhen-Yu Wang
  • Yue Hu
  • Qing-Jie Xia
  • Yang Xu
  • Fei-Fei Shang
  • Mei-Rong Chen
  • Fang Wang
  • Xue Zhou
  • Ting-Hua Wang
Original Research

Abstract

Spinal cord injury (SCI) often causes neurological deficits with poor recovery; the treatment, however, is far from satisfaction, and the mechanisms remain unclear. Using immunohistochemistry and western blotting analysis, we found α-synuclein (SNCA) was significantly up-regulated in the spinal caudal segment of rats subjected to spinal cord transection at 3 days post-operation. Moreover, the role of SNCA on neuronal growth and apoptosis in vitro was determined by using overexpressing and interfering SNCA recombined plasmid vectors, and the underlying mechanism was detected by QRT-PCR and western blotting. Spinal neurons transfected with SNCA-shRNA lentivirus gave rise to an optimal neuronal survival, while it results in cell apoptosis in SNCA-ORF group. In molecular level, SNCA silence induced the up-regulation of CNTF and down-regulation of Caspase7/9. Together, endogenous SNCA plays a crucial role in spinal neuronal survival, in which the underlying mechanism may be linked to the regulation both apoptotic genes (Caspase7/9) and CNTF. The present findings therefore provide novel insights into the role of SNCA in spinal cord and associated mechanism, which may provide novel cue for the treatment of SCI in future clinic trials.

Keywords

Alpha-synuclein Primary spinal neurons Spinal cord transection Apoptotic gene Ciliary neurotrophic factor 

Notes

Funding

This project was supported by Grants from National Natural Science Foundation of China (CN) (No. 81560215; 81171176), Ph.D. Programs Foundation of Ministry of Education of China (No. 20125317120001) and Yunnan Provincial Natural Science Foundation of China (No. 2011FZ112, 2013FZ134).

Compliance with Ethical Standard

Conflicts of interest

All authors declare that they have no conflict of interest.

Supplementary material

10571_2016_420_MOESM1_ESM.docx (4 mb)
Supplementary material 1 (DOCX 4144 kb)

References

  1. Abbaszadeh HA, Tiraihi T, Noori-Zadeh A, Delshad AR, Sadeghizade M, Taheri T (2015) Human ciliary neurotrophic factor-overexpressing stable bone marrow stromal cells in the treatment of a rat model of traumatic spinal cord injury. Cytotherapy 17:912–921CrossRefPubMedGoogle Scholar
  2. Aldrin-Kirk P, Davidsson M, Holmqvist S, Li JY, Bjorklund T (2014) Novel AAV-based rat model of forebrain synucleinopathy shows extensive pathologies and progressive loss of cholinergic interneurons. PLoS One 9:e100869CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barallobre MJ, Perier C, Bove J, Laguna A, Delabar JM, Vila M, Arbones ML (2014) DYRK1A promotes dopaminergic neuron survival in the developing brain and in a mouse model of Parkinson’s disease. Cell Death Dis 5:e1289CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beattie MS, Hermann GE, Rogers RC, Bresnahan JC (2002) Cell death in models of spinal cord injury. Prog Brain Res 137:37–47CrossRefPubMedGoogle Scholar
  5. Bregman BS, McAtee M, Dai HN, Kuhn PL (1997) Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Exp Neurol 148:475–494CrossRefPubMedGoogle Scholar
  6. Chadchankar H, Yavich L (2011) Sub-regional differences and mechanisms of the short-term plasticity of dopamine overflow in striatum in mice lacking alpha-synuclein. Brain Res 1423:67–76CrossRefPubMedGoogle Scholar
  7. Chen D, Zeng W, Fu Y, Gao M, Lv G (2015a) Bone marrow mesenchymal stem cells combined with minocycline improve spinal cord injury in a rat model. Int J Clin Exp Pathol 8:11957–11969PubMedPubMedCentralGoogle Scholar
  8. Chen XB, Yuan H, Wang FJ, Tan ZX, Liu H, Chen N (2015b) Protective role of selenium-enriched supplement on spinal cord injury through the up-regulation of CNTF and CNTF-Ralpha. Eur Rev Med Pharmacol Sci 19:4434–4442PubMedGoogle Scholar
  9. Chen ZW, Yuan FM, Sun ZW, Zhou LH, Liu J (2015c) Functional implication of synaptophysin upregulation in traumatic brain of adult rats. Ibrain 1:61–68Google Scholar
  10. Chinta SJ, Mallajosyula JK, Rane A, Andersen JK (2010) Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci Lett 486:235–239CrossRefPubMedPubMedCentralGoogle Scholar
  11. Choubey V, Safiulina D, Vaarmann A, Cagalinec M, Wareski P, Kuum M, Zharkovsky A, Kaasik A (2011) Mutant A53T alpha-synuclein induces neuronal death by increasing mitochondrial autophagy. J Biol Chem 286:10814–10824CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dai P, Zou Y, Xia QJ (2015) Role of survivin in TBI rats subjected to breviscapine treatment. Ibrain 1:117–125Google Scholar
  13. Deleersnijder A, Gerard M, Debyser Z, Baekelandt V (2013) The remarkable conformational plasticity of alpha-synuclein: blessing or curse? Trends Mol Med 19:368–377CrossRefPubMedGoogle Scholar
  14. Dietz V, Wirz M, Curt A, Colombo G (1998) Locomotor pattern in paraplegic patients: training effects and recovery of spinal cord function. Spinal Cord 36:380–390CrossRefPubMedGoogle Scholar
  15. Drouin-Ouellet J, St-Amour I, Saint-Pierre M, Lamontagne-Proulx J, Kriz J, Barker RA, Cicchetti F (2015) Toll-like receptor expression in the blood and brain of patients and a mouse model of Parkinson’s disease. Int J Neuropsychopharmacol 18:pyu103CrossRefPubMedCentralGoogle Scholar
  16. Dulovic M, Jovanovic M, Xilouri M, Stefanis L, Harhaji-Trajkovic L, Kravic-Stevovic T, Paunovic V, Ardah MT, El-Agnaf OM, Kostic V, Markovic I, Trajkovic V (2014) The protective role of AMP-activated protein kinase in alpha-synuclein neurotoxicity in vitro. Neurobiol Dis 63:1–11CrossRefPubMedGoogle Scholar
  17. Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, Dumont AS (2001) Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol 24:254–264CrossRefPubMedGoogle Scholar
  18. Grossman SD, Rosenberg LJ, Wrathall JR (2001) Temporal-spatial pattern of acute neuronal and glial loss after spinal cord contusion. Exp Neurol 168:273–282CrossRefPubMedGoogle Scholar
  19. Harding AJ, Lakay B, Halliday GM (2002) Selective hippocampal neuron loss in dementia with Lewy bodies. Ann Neurol 51:125–128CrossRefPubMedGoogle Scholar
  20. Hawryluk GW, Mothe A, Wang J, Wang S, Tator C, Fehlings MG (2012) An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury. Stem Cells Dev 21:2222–2238CrossRefPubMedGoogle Scholar
  21. Hirsch EC, Hunot S, Faucheux B, Agid Y, Mizuno Y, Mochizuki H, Tatton WG, Tatton N, Olanow WC (1999) Dopaminergic neurons degenerate by apoptosis in Parkinson’s disease. Mov Disord 14:383–385CrossRefPubMedGoogle Scholar
  22. Hu Z, Wang W, Ling J, Jiang C (2016) α-Mangostin inhibits α-synuclein-induced microglial neuroinflammation and neurotoxicity. Cell Mol Neurobiol 36:811–820CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jin D, Liu Y, Sun F, Wang X, Liu X, He Z (2015) Restoration of skilled locomotion by sprouting corticospinal axons induced by co-deletion of PTEN and SOCS3. Nat Commun 6:8074CrossRefPubMedPubMedCentralGoogle Scholar
  24. Keane RW, Kraydieh S, Lotocki G, Bethea JR, Krajewski S, Reed JC, Dietrich WD (2001) Apoptotic and anti-apoptotic mechanisms following spinal cord injury. J Neuropathol Exp Neurol 60:422–429CrossRefPubMedGoogle Scholar
  25. Larson ME, Sherman MA, Greimel S, Kuskowski M, Schneider JA, Bennett DA, Lesne SE (2012) Soluble alpha-synuclein is a novel modulator of Alzheimer’s disease pathophysiology. J Neurosci 32:10253–10266CrossRefPubMedPubMedCentralGoogle Scholar
  26. Liu XZ, Xu XM, Hu R, Du C, Zhang SX, McDonald JW, Dong HX, Wu YJ, Fan GS, Jacquin MF, Hsu CY, Choi DW (1997) Neuronal and glial apoptosis after traumatic spinal cord injury. J Neurosci 17:5395–5406PubMedGoogle Scholar
  27. Liu J, Shi M, Hong Z, Zhang J, Bradner J, Quinn T, Beyer RP, Mcgeer PL, Chen S, Zhang J (2010) Identification of ciliary neurotrophic factor receptor alpha as a mediator of neurotoxicity induced by alpha-synuclein. Proteomics 10:2138–2150CrossRefPubMedPubMedCentralGoogle Scholar
  28. Liu S, Sarkar C, Dinizo M, Faden AI, Koh EY, Lipinski MM, Wu J (2015a) Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death. Cell Death Dis 6:e1582CrossRefPubMedPubMedCentralGoogle Scholar
  29. Liu XJ, Zheng XP, Zhang R, Guo YL, Wang JH (2015b) Combinatorial effects of miR-20a and miR-29b on neuronal apoptosis induced by spinal cord injury. Int J Clin Exp Pathol 8:3811–3818PubMedPubMedCentralGoogle Scholar
  30. Luk KC, Lee VM (2014) Modeling Lewy pathology propagation in Parkinson’s disease. Parkinsonism Relat Disord 20(Suppl 1):S85–S87CrossRefPubMedPubMedCentralGoogle Scholar
  31. Marrachelli VG, Miranda FJ, Alabadi JA, Milan M, Cano-Jaimez M, Kirstein M, Alborch E, Farinas I, Perez-Sanchez F (2010) Perivascular nerve fiber alpha-synuclein regulates contractility of mouse aorta: a link to autonomic dysfunction in Parkinson’s disease. Neurochem Int 56:991–998CrossRefPubMedGoogle Scholar
  32. McKeith I, Mintzer J, Aarsland D, Burn D, Chiu H, Cohen-Mansfield J, Dickson D, Dubois B, Duda JE, Feldman H, Gauthier S, Halliday G, Lawlor B, Lippa C, Lopez OL, Carlos Machado J, O’Brien J, Playfer J, Reid W (2004) Dementia with Lewy bodies. Lancet Neurol 3:19–28CrossRefPubMedGoogle Scholar
  33. Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P (2009) Alpha-synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells. Int J Biochem Cell Biol 41:2015–2024CrossRefPubMedGoogle Scholar
  34. Pelkonen A, Yavich L (2011) Neuromuscular pathology in mice lacking alpha-synuclein. Neurosci Lett 487:350–353CrossRefPubMedGoogle Scholar
  35. Qiao H, Zhang Q, Yuan H, Li Y, Wang D, Wang R, He X (2015) Elevated neuronal alpha-synuclein promotes microglia activation after spinal cord ischemic/reperfused injury. Neuroreport 26:656–661CrossRefPubMedGoogle Scholar
  36. Rossignol S, Drew T, Brustein E, Jiang W (1999) Locomotor performance and adaptation after partial or complete spinal cord lesions in the cat. Prog Brain Res 123:349–365CrossRefPubMedGoogle Scholar
  37. Sato H, Kato T, Arawaka S (2015) Potential of cellular and animal models based on a prion-like propagation of alpha-synuclein for assessing antiparkinson agents. Mol Neurobiol 52:226–235CrossRefPubMedGoogle Scholar
  38. Schwab ME, Bartholdi D (1996) Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev 76:319–370PubMedGoogle Scholar
  39. Sumikura H, Takao M, Hatsuta H, Ito S, Nakano Y, Uchino A, Nogami A, Saito Y, Mochizuki H, Murayama S (2015) Distribution of alpha-synuclein in the spinal cord and dorsal root ganglia in an autopsy cohort of elderly persons. Acta Neuropathol Commun 3:57CrossRefPubMedPubMedCentralGoogle Scholar
  40. Sundberg M, Skottman H, Suuronen R, Narkilahti S (2010) Production and isolation of NG2+ oligodendrocyte precursors from human embryonic stem cells in defined serum-free medium. Stem cell Res 5:91–103CrossRefPubMedGoogle Scholar
  41. Tator CH (1996) Experimental and clinical studies of the pathophysiology and management of acute spinal cord injury. J Spinal Cord Med 19:206–214CrossRefPubMedGoogle Scholar
  42. Vivacqua G, Biagioni F, Yu S, Casini A, Bucci D, D’Este L, Fornai F (2012) Loss of spinal motor neurons and alteration of alpha-synuclein immunostaining in MPTP induced Parkinsonism in mice. J Chem Neuroanat 44:76–85CrossRefPubMedGoogle Scholar
  43. Wang HP, Dai P, Yuan FM, Liu J, Zou Y (2015) Inhibition of SNCA protected cortical neurons from apoptosis in TBI rats. Ibrain 1:52–60Google Scholar
  44. Wang C, Wang P, Zeng W, Li W (2016a) Tetramethylpyrazine improves the recovery of spinal cord injury via Akt/Nrf2/HO-1 pathway. Bioorg Med Chem Lett 26:1287–1291CrossRefPubMedGoogle Scholar
  45. Wang YC, Feng GY, Xia QJ, Hu Y, Xu Y, Xiong LL, Chen ZW, Wang HP, Wang TH, Zhou X (2016b) Knockdown of α-synuclein in cerebral cortex improves neural behavior associated with apoptotic inhibition and neurotrophin expression in spinal cord transected rats. Apoptosis 21:404–420CrossRefPubMedGoogle Scholar
  46. Wernig A, Muller S (1992) Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia 30:229–238CrossRefPubMedGoogle Scholar
  47. Winner B, Regensburger M, Schreglmann S, Boyer L, Prots I, Rockenstein E, Mante M, Zhao C, Winkler J, Masliah E, Gage FH (2012) Role of alpha-synuclein in adult neurogenesis and neuronal maturation in the dentate gyrus. J Neurosci 32:16906–16916CrossRefPubMedPubMedCentralGoogle Scholar
  48. Xie RS, Wang HP, Yuan FM, Zhou LH, Liu J (2015) Role of SNAP25 in adult rats subjected to traumatic brain injury and Erigeron breviscapus administration. Ibrain 1:165–171Google Scholar
  49. Xu SQ, Qin Y, Pan DB, Ye GX, Wu CJ, Wang S, Jiang JY, Fu J, Wang CJ (2016) Inhibition of WWP2 suppresses proliferation, and induces G1 cell cycle arrest and apoptosis in liver cancer cells. Mol Med Rep 13:2261–2266PubMedGoogle Scholar
  50. Yang EJ, Choi SM (2013) Alpha -synuclein modification in an ALS animal model. Evid-Based complement Altern Med 2013:259381Google Scholar
  51. Zhao M, Wang SW, Wang YJ, Zhang R, Li YN, Su YJ, Zhou WW, Yu XL, Liu RT (2014) Pan-amyloid oligomer specific scFv antibody attenuates memory deficits and brain amyloid burden in mice with Alzheimer’s disease. Curr Alzheimer Res 11:69–78CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Guo-Ying Feng
    • 1
  • Jia Liu
    • 2
  • You-Cui Wang
    • 3
  • Zhen-Yu Wang
    • 4
  • Yue Hu
    • 3
  • Qing-Jie Xia
    • 3
  • Yang Xu
    • 3
  • Fei-Fei Shang
    • 3
  • Mei-Rong Chen
    • 2
  • Fang Wang
    • 2
  • Xue Zhou
    • 1
  • Ting-Hua Wang
    • 1
    • 2
    • 3
    • 5
  1. 1.Department of Histology and Embryology, West China School of Preclinical and Forensic MedicineSichuan UniversityChengduChina
  2. 2.Institute of NeuroscienceKunming Medical UniversityKunmingChina
  3. 3.Department of Anesthesia, Institute of Neurological Disease, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
  4. 4.Biomedical Engineering Research CenterKunming Medical UniversityKunmingChina
  5. 5.Department of Histology and Neurobiology, West China School of Preclinical and Forensic MedicineSichuan UniversityChengduChina

Personalised recommendations