Skip to main content

Advertisement

Log in

Sirt1: Role Under the Condition of Ischemia/Hypoxia

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Silent information regulator factor 2-related enzyme 1 (sirtuin 1, Sirt1) is a nicotinamide adenine dinucleotide-dependent deacetylase, which can deacetylate histone and non-histone proteins and other transcription factors, and is involved in the regulation of many physiological functions, including cell senescence, gene transcription, energy balance, and oxidative stress. Ischemia/hypoxia injury remains an unresolved and complicated situation in the diseases of ischemia stroke, heart failure, and coronary heart disease, especially among the old folks. Studies have demonstrated that aging could enhance the vulnerability of brain, heart, lung, liver, and kidney to ischemia/hypoxia injury and the susceptibility in old folks to ischemia/hypoxia injury might be associated with Sirt1. In this review, we mainly summarize the role of Sirt1 in modulating pathways against energy depletion and its involvement in oxidative stress, apoptosis, and inflammation under the condition of ischemia/hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akkafa F, Halil Altiparmak I, Erkus ME, Aksoy N, Kaya C, Ozer A, Sezen H, Oztuzcu S, Koyuncu I, Umurhan B (2015) Reduced SIRT1 expression correlates with enhanced oxidative stress in compensated and decompensated heart failure. Redox Biol. 6:169–173. doi:10.1016/j.redox.2015.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anchoori RK, Harikumar KB, Batchu VR, Aggarwal BB, Khan SR (2010) Inhibition of IkB kinase and NF-kappaB by a novel synthetic compound SK 2009. Bioorg Med Chem 18:229–235. doi:10.1016/j.bmc.2009.10.065

    Article  CAS  PubMed  Google Scholar 

  • Andrews ZB, Horvath B, Barnstable CJ, Elsworth J, Yang L, Beal MF, Roth RH, Matthews RT, Horvath TL (2005) Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson’s disease. J Neurosci 25:184–191

    Article  CAS  PubMed  Google Scholar 

  • Ayub A, Poulose N, Raju R (2015) Resveratrol improves survival and prolongs life following hemorrhagic shock. Mol Med 21:305–312. doi:10.2119/molmed.2015.00013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bass TM, Weinkove D, Houthoofd K, Gems D, Partridge L (2007) Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev 128:546–552

    Article  CAS  PubMed  Google Scholar 

  • Becatti M, Taddei N, Cecchi C, Nassi N, Nassi PA, Fiorillo C (2012) SIRT1 modulates MAPK pathways in ischemic–reperfused cardiomyocytes. Cell Mol Life Sci 69:2245–2260. doi:10.1007/s00018-012-0925-5

    Article  CAS  PubMed  Google Scholar 

  • Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435

    Article  CAS  PubMed  Google Scholar 

  • Blokh D, Stambler I (2015) Information theoretical analysis of aging as a risk factor for heart disease. Aging Dis 6:196–207. doi:10.14336/AD.2014.0623

    Article  PubMed  PubMed Central  Google Scholar 

  • Borra MT, Smith BC, Denu JM (2005) Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280:17187–17195

    Article  CAS  PubMed  Google Scholar 

  • Boutant M, Cantó C (2013) SIRT1 metabolic actions: integrating recent advances from mouse models. Mol Metab 3:5–18. doi:10.1016/j.molmet.2013.10.006

    Article  PubMed  PubMed Central  Google Scholar 

  • Breitenstein A, Wyss CA, Spescha RD, Franzeck FC, Hof D, Riwanto M, Hasun M, Akhmedov A, von Eckardstein A, Maier W, Landmesser U, Lüscher TF, Camici GG (2013) Peripheral blood monocyte Sirt1 expression is reduced in patients with coronary artery disease. PLoS ONE 8:e53106. doi:10.1371/journal.pone.0053106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cattelan A, Ceolotto G, Bova S, Albiero M, Kuppusamy M, De Martin S, Semplicini A, Fadini GP, de Kreutzenberg SV, Avogaro A (2015) NAD(+)-dependent SIRT1 deactivation has a key role on ischemia-reperfusion-induced apoptosis. Vascul Pharmacol 70:35–44. doi:10.1016/j.vph.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  • Chen CJ, Yu W, Fu YC, Wang X, Li JL, Wang W (2009) Resveratrol protects cardiomyocytes from hypoxia-induced apoptosis through the SIRT1-FoxO1 pathway. Biochem Biophys Res Commun 378:389–393. doi:10.1016/j.bbrc.2008.11.110

    Article  CAS  PubMed  Google Scholar 

  • Chen YX, Zhang M, Cai Y, Zhao Q, Dai W (2015) The Sirt1 activator SRT1720 attenuates angiotensin II-induced atherosclerosis in apoE/ mice through inhibiting vascular inflammatory response. Biochem Biophys Res Commun 465:732–738. doi:10.1016/j.bbrc.2015.08.066

    Article  CAS  PubMed  Google Scholar 

  • Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305:390–392

    Article  CAS  PubMed  Google Scholar 

  • Conti V, Forte M, Corbi G, Russomanno G, Formisano L, Landolfi A, Izzo V, Filippell A, Vecchione C, Carrizzo A (2015) Sirtuins: a possible clinical implication in cardio- and cerebro- vascular systems. Curr Drug Targets (Epub ahead of print)

  • Deierborg T, Wieloch T, Diano S, Warden CH, Horvath TL, Mattiasson G (2008) Overexpression of UCP2 protects thalamic neurons following global ischemia in the mouse. J Cereb Blood Flow Metab 28:1186–1195. doi:10.1038/jcbfm.2008.8

    Article  PubMed  Google Scholar 

  • Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA (2009) Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 159:993–1002. doi:10.1016/j.neuroscience.2009.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diano S, Matthews RT, Patrylo P, Yang L, Beal MF, Barnstable CJ, Horvath TL (2003) Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning. Endocrinology 144:5014–5021. doi:10.1038/jcbfm.2008.8

    Article  CAS  PubMed  Google Scholar 

  • Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT, Gerard RD, Garcia JA (2009) Regulation of hypoxia-inducible factor 2α signaling by the stress-responsive deacetylase sirtuin 1. Science 324:1289–1293. doi:10.1126/science.1169956

    Article  CAS  PubMed  Google Scholar 

  • Daitoku K, Fukui K, Ichinoseki I, Munakata M, Takahashi S, Fukuda I (2004) Radiotherapy-induced aortic valve disease associated with porcelain aorta. Jpn J Thorac Cardiovasc Surg 52:349–352

    Article  PubMed  Google Scholar 

  • El Ramy R, Magroun N, Messadecq N, Gauthier LR, Boussin FD, Kolthur-Seetharam U, Schreiber V, McBurney MW, Sassone-Corsi P, Dantzer F (2009) Functional interplay between Parp-1 and SirT1 in genome integrity and chromatin-based processes. Cell Mol Life Sci 66:3219–3234. doi:10.1007/s00018-009-0105-4

    Article  PubMed  Google Scholar 

  • Esteves TC, Brand MD (2005) The reactions catalysed by the mitochondrial uncoupling proteins UCP2 and UCP3. Biochim Biophys Acta 1709:35–44

    Article  CAS  PubMed  Google Scholar 

  • Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V (2009) Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol 8:355–369. doi:10.1016/S1474-4422(09)70025-0

    Article  PubMed  Google Scholar 

  • Frye RA (1999) Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 260:273–279

    Article  CAS  PubMed  Google Scholar 

  • Fu B, Zhang J, Zhang X, Zhang C, Li Y, Zhang Y, He T, Li P, Zhu X, Zhao Y, Zhang Y, Wang X (2014) Alpha-lipoic acid upregulates SIRT1-dependent PGC-1α expression and protects mouse brain against focal ischemia. Neuroscience 281C:251–257. doi:10.1016/j.neuroscience.2014.09.058

    Article  Google Scholar 

  • Gano LB, Donato AJ, Pasha HM, Hearon CM Jr, Sindler AL, Seals DR (2014) The SIRT1 activator SRT1720 reverses vascular endothelial dysfunction, excessive superoxide production, and inflammation with aging in mice. Am J Physiol Heart Circ Physiol 307:H1754–H1763. doi:10.1152/ajpheart.00377.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Liu B, Zhou Z (2013) Resveratrol activates SIRT1 in a Lamin A-dependent manner. Cell Cycle 12:872–876. doi:10.4161/cc.24061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP et al (2013) Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155:1624–1638. doi:10.1016/j.cell.2013.11.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong H, Pang J, Han Y, Dai Y, Dai D, Cai J, Zhang TM (2014) Age-dependent tissue expression patterns of Sirt1 in senescence-accelerated mice. Mol Med Rep 10:3296–3302. doi:10.3892/mmr.2014.2648

    CAS  PubMed  Google Scholar 

  • Gu XS, Wang ZB, Ye Z, Lei JP, Li L, Su DF, Zheng X (2014) Resveratrol, an activator of SIRT1, upregulates AMPK and improves cardiac function in heart failure. Genet Mol Res 13:323–335. doi:10.4238/2014

    Article  CAS  PubMed  Google Scholar 

  • Guarente L (2000) Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 14:1021–1026

    CAS  PubMed  Google Scholar 

  • Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J (2010) Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res 107:1470–1482. doi:10.1161/CIRCRESAHA.110.227371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori Y, Okamoto Y, Nagatsuka K, Takahashi R, Kalaria RN, Kinoshita M, Ihara M (2015) SIRT1 attenuates severe ischemic damage by preserving cerebral blood flow. NeuroReport 26:113–117. doi:10.1097/WNR.0000000000000308

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Jiménez M, Hurtado O, Cuartero MI, Ballesteros I, Moraga A, Pradillo JM, McBurney MW, Lizasoain I, Moro MA (2013) Silent information regulator 1 protects the brain against cerebral ischemic damage. Stroke 44:2333–2337. doi:10.1161/STROKEAHA.113.001715

    Article  PubMed  Google Scholar 

  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    Article  CAS  PubMed  Google Scholar 

  • Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, Shao D, Takagi H, Oka S, Sadoshima J (2010) Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 122:2170–2182. doi:10.1161/CIRCULATIONAHA.110.958033

    Article  PubMed  PubMed Central  Google Scholar 

  • Imai S, Guarente L (2010) Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol Sci 31:212–220. doi:10.1016/j.tips.2010.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing H, Yao J, Liu X, Fan H, Zhang F, Li Z, Tian X, Zhou Y (2014) Fish-oil emulsion (omega-3 polyunsaturated fatty acids) attenuates acute lung injury induced by intestinal ischemia-reperfusion through Adenosine 5’-monophosphate-activated protein kinase-sirtuin1 pathway. J Surg Res 187:252–261. doi:10.1016/j.jss.2013.10.009

    Article  CAS  PubMed  Google Scholar 

  • Joo HY, Yun M, Jeong J, Park ER, Shin HJ, Woo SR, Jung JK, Kim YM, Park JJ, Kim J, Lee KH (2015) SIRT1 deacetylates and stabilizes hypoxia-inducible factor-1a (HIF-1a) via direct interactions during hypoxia. Biochem Biophys Res Commun 462:294–300. doi:10.1016/j.bbrc.2015.04.119

    Article  CAS  PubMed  Google Scholar 

  • Kang WK, Kim YH, Kim BS, Kim JY (2014) Growth phase-dependent roles of Sir2 in oxidative stress resistance and chronological lifespan in yeast. J Microbiol 52:652–658. doi:10.1007/s12275-014-4173-2

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Joe Y, Yu JK, Chen Y, Jeong SO, Mani N, Cho GJ, Pae HO, Ryter SW, Chung HT (2015) Carbon monoxide protects against hepatic ischemia/reperfusion injury by modulating the miR-34a/SIRT1 pathway. Biochim Biophys Acta 1852:1550–1559. doi:10.1016/j.bbadis.2015.04.017

    Article  CAS  PubMed  Google Scholar 

  • Kumari S, Chaurasia SN, Nayak MK, Mallick RL, Dash D (2015) Sirtuin inhibition induces apoptosis-like changes in platelets and thrombocytopenia. J Biol Chem 290:12290–12299. doi:10.1074/jbc.M114.615948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S, Sugimoto T, Haneda M, Kashiwagi A, Koya D (2010) Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 120:1043–1055. doi:10.1172/JCI41376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee D, Goldberg AL (2013) SIRT1 protein, by blocking the activities of transcription factors FoxO1 and FoxO3, inhibits muscle atrophy and promotes muscle growth. J Biol Chem 288:30515–30526. doi:10.1074/jbc.M113.489716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW (2010) Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α. Mol Cell 38:864–878. doi:10.1016/j.molcel.2010.05.023

    Article  CAS  PubMed  Google Scholar 

  • Lim JH, Kim EN, Kim MY, Chung S, Shin SJ, Kim HW, Yang CW, Kim YS, Chang YS, Park CW, Choi BS (2012) Age-associated molecular changes in the kidney in aged mice. Oxid Med Cell Longev 2012:171383. doi:10.1155/2012/171383

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin SJ, Ford E, Haigis M, Liszt G, Guarente L (2004) Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 18:12–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Wang P, Liu X, He D, Liang C, Yu Y (2014) Exogenous NAD(+) supplementation protects H9c2 cardiac myoblasts against hypoxia/reoxygenation injury via Sirt1-p53 pathway. Fundam Clin Pharmacol 28:180–189. doi:10.1111/fcp.12016

    Article  CAS  PubMed  Google Scholar 

  • Lu TM, Tsai JY, Chen YC, Huang CY, Hsu HL, Weng CF, Shih CC, Hsu CP (2014) Downregulation of Sirt1 as aging change in advanced heart failure. J Biomed Sci 21:57. doi:10.1186/1423-0127-21-57

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangerich A, Bürkle A (2012) Pleiotropic cellular functions of PARP1 in longevity and aging: genome maintenance meets inflammation. Oxid Med Cell Longev 2012:321653. doi:10.1155/2012/321653

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng Z, Li J, Zhao H, Liu H, Zhang G, Wang L, Hu HE, Li DI, Liu M, Bi F (2015) Resveratrol relieves ischemia-induced oxidative stress in the hippocampus by activating SIRT1. Exp Ther Med 10:525–530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299

    Article  CAS  PubMed  Google Scholar 

  • Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Méneur C, Permutt MA, Imai S (2005) Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2:105–117

    Article  CAS  PubMed  Google Scholar 

  • Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ et al (2015) Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 1131:e29–e322. doi:10.1161/CIR.0000000000000152

    Article  Google Scholar 

  • Mu W, Zhang Q, Tang X, Fu W, Zheng W, Lu Y, Li H, Wei Y, Li L, She Z, Chen H, Liu D (2014) Overexpression of a dominant-negative mutant of SIRT1 in mouse heart causes cardiomyocyte apoptosis and early-onset heart failure. Sci China Life Sci 57:915–924. doi:10.1007/s11427-014-4687-1

    Article  CAS  PubMed  Google Scholar 

  • Nadtochiy SM, Redman E, Rahman I, Brookes PS (2011) Lysine deacetylation in ischaemic preconditioning: the role of SIRT1. Cardiovasc Res 89:643–649. doi:10.1093/cvr/cvq287

    Article  CAS  PubMed  Google Scholar 

  • Odden MC, Coxson PG, Moran A, Lightwood JM, Goldman L, Bibbins-Domingo K (2013) The impact of the aging population on coronary heart disease in the United States. Am J Med 124:827–833. doi:10.1016/j.amjmed.2011.04.010

    Article  Google Scholar 

  • Pantazi E, Zaouali MA, Bejaoui M, Serafin A, Folch-Puy E, Petegnief V, De Vera N, Ben Abdennebi H, Rimola A, Roselló-Catafau J (2014) Silent information regulator 1 protects the liver against ischemia–reperfusion injury: implications in steatotic liver ischemic preconditioning. Transpl Int 27:493–503. doi:10.1111/tri.12276

    Article  CAS  PubMed  Google Scholar 

  • Pervaiz S (2003) Resveratrol: from grapevines to mammalian biology. FASEB J 17:1975–1985

    Article  CAS  PubMed  Google Scholar 

  • Petegnief V, Planas AM (2013) SIRT1 regulation modulates stroke outcome. Transl Stroke Res 4:663–671. doi:10.1007/s12975-013-0277-y

    Article  CAS  PubMed  Google Scholar 

  • Poulose N, Raju R (2015) Sirtuin regulation in aging and injury. Biochim Biophys Acta 1852:2442–2455. doi:10.1016/j.bbadis.2015.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash S, O’Hare AM (2009) Interaction of aging and chronic kidney disease. Semin Nephrol 29:497–503

    Article  PubMed  PubMed Central  Google Scholar 

  • Quintas A, de Solís AJ, Díez-Guerra FJ, Carrascosa JM, Bogónez E (2012) Age-associated decrease of SIRT1 expression in rat hippocampus: prevention by late onset caloric restriction. Exp Gerontol 47:198–201. doi:10.1016/j.exger.2011.11.010

    Article  CAS  PubMed  Google Scholar 

  • Ran M, Li Z, Yang L, Tong L, Zhang L, Dong H (2015) Calorie restriction attenuates cerebral ischemic injury via increasing SIRT1 synthesis in the rat. Brain Res 1610:61–68. doi:10.1016/j.brainres.2015.03.043

    Article  CAS  PubMed  Google Scholar 

  • Raval AP, Dave KR, Pérez-Pinzón MA (2005) Resveratrol mimics ischemic preconditioning in the brain. J Cereb Blood Flow Metab 26:1141–1147

    Article  PubMed  Google Scholar 

  • Rehan L, Laszki-Szcząchor K, Sobieszczańska M, Polak-Jonkisz D (2014) SIRT1 and NAD as regulators of ageing. Life Sci 105:1–6. doi:10.1016/j.lfs.2014.03.015

    Article  CAS  PubMed  Google Scholar 

  • Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 101:15998–16003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalwala M, Zhu SG, Das A, Salloum FN, Xi L, Kukreja RC (2014) Sirtuin 1 (SIRT1) activation mediates sildenafil induced delayed cardioprotection against ischemia-reperfusion injury in mice. PLoS ONE 9:e86977. doi:10.1371/journal.pone.0086977

    Article  PubMed  PubMed Central  Google Scholar 

  • Simão F, Matté A, Matté C, Soares FM, Wyse AT, Netto CA, Salbego CG (2011) Resveratrol prevents oxidative stress and inhibition of Na(+)K(+)-ATPase activity induced by transient global cerebral ischemia in rats. J Nutr Biochem 22:921–928. doi:10.1016/j.jnutbio.2010.07.013

    Article  PubMed  Google Scholar 

  • Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91:1033–1042

    Article  CAS  PubMed  Google Scholar 

  • St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408

    Article  CAS  PubMed  Google Scholar 

  • Takada Y, Singh S, Aggarwal BB (2004) Identification of a p65 peptide that selectively inhibits NF-kappa B activation induced by various inflammatory stimuli and its role in down-regulation of NF-kappaB-mediated gene expression and up-regulation of apoptosis. J Biol Chem 279:15096–15104

    Article  CAS  PubMed  Google Scholar 

  • Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y (2007) Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 282:6823–6832

    Article  CAS  PubMed  Google Scholar 

  • Thompson HJ, McCormick WC, Kagan SH (2006) Traumatic brain injury in older adults: epidemiology, outcomes, and future implications. J Am Geriatr Soc 54:1590–1595

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson JW, Dave KR, Saul I, Narayanan SV, Perez-Pinzon MA (2013) Epsilon PKC increases brain mitochondrial SIRT1 protein levels via heat shock protein 90 following ischemic preconditioning in rats. PLoS ONE 8:e75753. doi:10.1371/journal.pone.0075753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson AM, Wagner R, Rzucidlo EM (2014) Age-related loss of SirT1 expression results in dysregulated human vascular smooth muscle cell function. Am J Physiol Heart Circ Physiol 307:H533–H541

    Article  CAS  PubMed  Google Scholar 

  • Tong C, Morrison A, Mattison S et al (2012) Impaired SIRT1 nucleocytoplasmic shuttling in the senescent heart during ischemic stress. FASEB J 27:4332–4342. doi:10.1096/fj.12-216473

    Article  PubMed  Google Scholar 

  • Tsai KL, Cheng YY, Leu HB, Lee YY, Chen TJ, Liu DH, Kao CL (2015) Investigating the role of Sirt1-modulated oxidative stress in relation to benign paroxysmal positional vertigo and Parkinson’s disease. Neurobiol Aging 36:2607–2616. doi:10.1016/j.neurobiolaging.2015.05.012

    Article  CAS  PubMed  Google Scholar 

  • Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A (2006) Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 16:296–300

    Article  CAS  PubMed  Google Scholar 

  • Wang Y (2014) Molecular links between caloric restriction and Sir2/SIRT1 activation. Diabetes Metab J 38:321–329. doi:10.4093/dmj.2014.38.5.321

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang T, Gu J, Wu PF, Wang F, Xiong Z, Yang YJ, Wu WN, Dong LD, Chen JG (2009) Protection by tetrahydroxystilbene glucoside against cerebral ischemia: involvement of JNK, SIRT1, and NF-kappaB pathways and inhibition of intracellular ROS/RNS generation. Free Radic Biol Med 47:229–240. doi:10.1016/j.freeradbiomed.2009.02.027

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Chen HZ, Lv X, Liu DP (2013) SIRT1 as a novel potential treatment target for vascular aging and age-related vascular disease. Curr Mol Med 13:155–164

    Article  PubMed  Google Scholar 

  • Wątroba M, Maślińska D, Maśliński S (2012) Current overview of functions of FoxO proteins, with special regards to cellular homeostasis, cell response to stress, as well as inflammation and aging. Adv Med Sci 57:183–195. doi:10.2478/v10039-012-0039-1

    Article  PubMed  Google Scholar 

  • Xu WH, Yao XY, Yu HJ, Huang JW, Cui LY (2012) Downregulation of miR-199a may play a role in 3-nitropropionic acid induced ischemic tolerance in rat brain. Brain Res 1429:116–123. doi:10.1016/j.brainres.2011.10.007

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Bai B, Fan P, Cai Y, Huang B, Law IK, Liu L, Xu A, Tung C, Li X, Siu FM, Che CM, Vanhoutte PM, Wang Y (2013) Selective overexpression of human SIRT1 in adipose tissue enhances energy homeostasis and prevents the deterioration of insulin sensitivity with aging in mice. Am J Transl Res 5:412–426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon H, Shin SH, Shin DH, Chun YS, Park JW (2014) Differential roles of Sirt1 in HIF-1α and HIF-2α mediated hypoxic responses. Biochem Biophys Res Commun 444:36–43. doi:10.1016/j.bbrc.2014.01.001

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Li ZL, Xu XM, Hu Y, Yao JH, Xu W, Jing HR, Wang S, Ning SL, Tian XF (2015) Protective effects of icariin-mediated SIRT1/FOXO3 signaling pathway on intestinal ischemia/reperfusion-induced acute lung injury. Mol Med Rep 11:267–276. doi:10.3892/mmr.2014.2679

    Google Scholar 

  • Zhu HR, Wang ZY, Zhu XL, Wu XX, Li EG, Xu Y (2010) Icariin protects against brain injury by enhancing SIRT1-dependent PGC-1alpha expression in experimental stroke. Neuropharmacology 59:70–76. doi:10.1016/j.neuropharm.2010.03.017

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 81370183), the Tianjin Natural Science Foundation (Grant No. 14JCYBJC27800), and the National Clinical Key Subject Construction Project of NHFPC Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical approval

The study complies with current ethical consideration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Tan, J., Li, M. et al. Sirt1: Role Under the Condition of Ischemia/Hypoxia. Cell Mol Neurobiol 37, 17–28 (2017). https://doi.org/10.1007/s10571-016-0355-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-016-0355-2

Keywords

Navigation