Skip to main content

Advertisement

Log in

The Co-chaperone BAG2 Mediates Cold-Induced Accumulation of Phosphorylated Tau in SH-SY5Y Cells

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Inclusions of phosphorylated tau (p-tau) are a hallmark of many neurodegenerative disorders classified as “tauopathy,” of which Alzheimer’s disease is the most prevalent form. Dysregulation of tau phosphorylation disrupts neuron structure and function, and hyperphosphorylated tau aggregates to form neurotoxic inclusions. The abundance of ubiquitin in tau inclusions suggests a defect in ubiquitin-mediated tau protein degradation by the proteasome. Under the temperature of 37 °C, the co-chaperone BAG2 protein targets phosphorylated tau for degradation via by a more-efficient, ubiquitin-independent pathway. In both in vivo and in vitro studies, cold exposure induces the accumulation of phosphorylated tau protein. The SH-SY5Y cell line differentiates into neuron-like cells on treatment with retinoic acid and is an established model for research on the effects of cold on tau phosphorylation. The aim of the present study was to investigate whether BAG2 mediates the cold-induced accumulation of phosphorylated tau protein. Our findings show that cold exposure causes a decrease in BAG2 expression in undifferentiated cells. Conversely, BAG2 expression is increased in differentiated cells exposed to cold. Further, undifferentiated cells exposed to cold had an increased proportion of p-tau to total tau, suggesting an accumulation of p-tau that is consistent with decreased levels of BAG2. Overexpression of BAG2 in cold-exposed undifferentiated cells restored levels of p-tau to those of 37 °C undifferentiated control. Interestingly, although BAG2 expression increased in differentiated cells, this increase was not accompanied by a decrease in the proportion of p-tau to total tau. Further, overexpression of BAG2 in cold exposed differentiated cells showed no significant difference in p-tau levels compared to 37 °C controls. Taken together, these data show that expression of BAG2 is differently regulated in a differentiation-dependent context. Our results suggest that repression of BAG2 expression or BAG2 activity by cold-sensitive pathways, as modeled in undifferentiated and differentiated cells, respectively, may be a causal factor in the accumulation of cytotoxic hyperphosphorylated tau protein via restriction of BAG2-mediated clearance of cellular p-tau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abramoff M, Magelhaes P, Ram S (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  • Bendiske J, Caba E, Brown QB, Bahr BA (2002) Intracellular deposition, microtubule destabilization, and transport failure: an “early” pathogenic cascade leading to synaptic decline. J Neuropathol Exp Neurol 61:640–650

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bretteville A, Marcouiller F, Julien C, El Khoury NB, Petry FR, Poitras I, Mouginot D, Levesque G, Hebert SS, Planel E (2012) Hypothermia-induced hyperphosphorylation: a new model to study tau kinase inhibitors. Sci Rep 2:480

    Article  PubMed  PubMed Central  Google Scholar 

  • Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33:95–130

    Article  CAS  PubMed  Google Scholar 

  • Carrettiero DC, Hernandez I, Neveu P, Papagiannakopoulos T, Kosik KS (2009) The cochaperone BAG2 sweeps paired helical filament-insoluble tau from the microtubule. J Neurosci 29:2151–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung YT, Lau WK, Yu MS, Lai CS, Yeung SC, So KF, Chang RC (2009) Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology 30:127–135

    Article  CAS  PubMed  Google Scholar 

  • Collins KJ, Exton-Smith AN, Dore C (1981) Urban hypothermia: preferred temperature and thermal perception in old age. Br Med J (Clin Res Ed) 282:175–177

    Article  CAS  Google Scholar 

  • Dalen ML, Froyland E, Saugstad OD, Mollnes TE, Rootwelt T (2009) Post-hypoxic hypothermia is protective in human NT2-N neurons regardless of oxygen concentration during reoxygenation. Brain Res 1259:80–89

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Wu X, Xu Z, Zhang Y, Xie Z (2012) Anesthetic isoflurane increases phosphorylated tau levels mediated by caspase activation and Abeta generation. PLoS One 7:e39386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drewes G, Lichtenberg-Kraag B, Doring F, Mandelkow EM, Biernat J, Goris J, Doree M, Mandelkow E (1992) Mitogen activated protein (MAP) kinase transforms tau protein into an Alzheimer-like state. EMBO J 11:2131–2138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Q, Cheng B, Yang R, Sun FY, Zhu CQ (2005) Dynamic changes of phosphorylated tau in mouse hippocampus after cold water stress. Neurosci Lett 388:13–16

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Nakao M, Araki T, Ueda H (1992) Thermoregulatory responses of young and older men to cold exposure. Eur J Appl Physiol Occup Physiol 65:492–498

    Article  CAS  PubMed  Google Scholar 

  • Iqbal K, Grundke-Iqbal I (1991) Ubiquitination and abnormal phosphorylation of paired helical filaments in Alzheimer’s disease. Mol Neurobiol 5:399–410

    Article  CAS  PubMed  Google Scholar 

  • Iqbal K, Zaidi T, Bancher C, Grundke-Iqbal I (1994) Alzheimer paired helical filaments. Restoration of the biological activity by dephosphorylation. FEBS Lett 349:104–108

    Article  CAS  PubMed  Google Scholar 

  • Julien C, Marcouiller F, Bretteville A, El Khoury NB, Baillargeon J, Hebert SS, Planel E (2012) Dimethyl sulfoxide induces both direct and indirect tau hyperphosphorylation. PLoS One 7:e40020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaFerla FM, Tinkle BT, Bieberich CJ, Haudenschild CC, Jay G (1995) The Alzheimer’s A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet 9:21–30

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Goldberg AL (1998) Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Maas T, Eidenmuller J, Brandt R (2000) Interaction of tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments. J Biol Chem 275:15733–15740

    Article  CAS  PubMed  Google Scholar 

  • Maurin H, Lechat B, Borghgraef P, Devijver H, Jaworski T, Van Leuven F (2014) Terminal hypothermic tau. P301L mice have increased tau phosphorylation independently of glycogen synthase kinase 3alpha/beta. Eur J Neurosci 40:2442–2453

    Article  PubMed  Google Scholar 

  • McLaughlin D, Tsirimonaki E, Vallianatos G, Sakellaridis N, Chatzistamatiou T, Stavropoulos-Gioka C, Tsezou A, Messinis I, Mangoura D (2006) Stable expression of a neuronal dopaminergic progenitor phenotype in cell lines derived from human amniotic fluid cells. J Neurosci Res 83:1190–1200

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Petrucelli L, Dickson D, Kehoe K, Taylor J, Snyder H, Grover A, De Lucia M, McGowan E, Lewis J, Prihar G, Kim J, Dillmann WH, Browne SE, Hall A, Voellmy R, Tsuboi Y, Dawson TM, Wolozin B, Hardy J, Hutton M (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13:703–714

    Article  CAS  PubMed  Google Scholar 

  • Planel E, Miyasaka T, Launey T, Chui DH, Tanemura K, Sato S, Murayama O, Ishiguro K, Tatebayashi Y, Takashima A (2004) Alterations in glucose metabolism induce hypothermia leading to tau hyperphosphorylation through differential inhibition of kinase and phosphatase activities: implications for Alzheimer’s disease. J Neurosci 24:2401–2411

    Article  CAS  PubMed  Google Scholar 

  • Planel E, Richter KE, Nolan CE, Finley JE, Liu L, Wen Y, Krishnamurthy P, Herman M, Wang L, Schachter JB, Nelson RB, Lau LF, Duff KE (2007) Anesthesia leads to tau hyperphosphorylation through inhibition of phosphatase activity by hypothermia. J Neurosci 27:3090–3097

    Article  CAS  PubMed  Google Scholar 

  • Planel E, Bretteville A, Liu L, Virag L, Du AL, Yu WH, Dickson DW, Whittington RA, Duff KE (2009) Acceleration and persistence of neurofibrillary pathology in a mouse model of tauopathy following anesthesia. FASEB J 23:2595–2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pool M, Thiemann J, Bar-Or A, Fournier AE (2008) NeuriteTracer: a novel ImageJ plugin for automated quantification of neurite outgrowth. J Neurosci Methods 168:134–139

    Article  PubMed  Google Scholar 

  • Poppek D, Keck S, Ermak G, Jung T, Stolzing A, Ullrich O, Davies KJ, Grune T (2006) Phosphorylation inhibits turnover of the tau protein by the proteasome: influence of RCAN1 and oxidative stress. Biochem J 400:511–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojo LE, Alzate-Morales J, Saavedra IN, Davies P, Maccioni RB (2010) Selective interaction of lansoprazole and astemizole with tau polymers: potential new clinical use in diagnosis of Alzheimer’s disease. J Alzheimers Dis 19:573–589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Leon Y, Pascual A (2003) Induction of tyrosine kinase receptor b by retinoic acid allows brain-derived neurotrophic factor-induced amyloid precursor protein gene expression in human SH-SY5Y neuroblastoma cells. Neuroscience 120:1019–1026

    Article  CAS  PubMed  Google Scholar 

  • Run X, Liang Z, Zhang L, Iqbal K, Grundke-Iqbal I, Gong CX (2009) Anesthesia induces phosphorylation of tau. J Alzheimers Dis 16:619–626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago FE, Almeida MC, Carrettiero DC (2015) BAG2 is repressed by NF-κB signaling, and its overexpression is sufficient to shift Aß1-42 from neurotrophic to neurotoxic in undifferentiated SH-SY5Y neuroblastoma. J Mol Neurosci. doi:10.1007/s12031-015-0579-5

    PubMed  Google Scholar 

  • Shimura H, Miura-Shimura Y, Kosik KS (2004a) Binding of tau to heat shock protein 27 leads to decreased concentration of hyperphosphorylated tau and enhanced cell survival. J Biol Chem 279:17957–17962

    Article  CAS  PubMed  Google Scholar 

  • Shimura H, Schwartz D, Gygi SP, Kosik KS (2004b) CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem 279:4869–4876

    Article  CAS  PubMed  Google Scholar 

  • Sontag E, Nunbhakdi-Craig V, Lee G, Brandt R, Kamibayashi C, Kuret J, White CL 3rd, Mumby MC, Bloom GS (1999) Molecular interactions among protein phosphatase 2A, tau, and microtubules. Implications for the regulation of tau phosphorylation and the development of tauopathies. J Biol Chem 274:25490–25498

    Article  CAS  PubMed  Google Scholar 

  • Stieler JT, Bullmann T, Kohl F, Toien O, Bruckner MK, Hartig W, Barnes BM, Arendt T (2011) The physiological link between metabolic rate depression and tau phosphorylation in mammalian hibernation. PLoS One 6:e14530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Mandelkow E (2012) Degradation of tau protein by autophagy and proteasomal pathways. Biochem Soc Trans 40:644–652

    Article  CAS  PubMed  Google Scholar 

  • Whittington RA, Papon MA, Chouinard F, Planel E (2010) Hypothermia and Alzheimer’s disease neuropathogenic pathways. Curr Alzheimer Res 7:717–725

    Article  CAS  PubMed  Google Scholar 

  • Whittington RA, Bretteville A, Virag L, Emala CW, Maurin TO, Marcouiller F, Julien C, Petry FR, El-Khoury NB, Morin F, Charron J, Planel E (2013) Anesthesia-induced hypothermia mediates decreased ARC gene and protein expression through ERK/MAPK inactivation. Sci Rep 3:1388

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors with to acknowledge extramural financial support provided by FAPESP (Grant, 2009/11446-4, 2011/06528-1 and 2012/50336-2) and CNPq (449102/2014-9) as well as financial support from CAPES and UFABC intramural funds.

Authors’ Contributions

C. A. D. P., M. C. A. and D. C. C. contributed to design of experiments. C. A. D. P., F. E. S., A. S. A. O., and F. A. O. performed experiments. Analysis of experimental data was done by C. A. D. P., F. E. S., M. C. A., and D. C. C. The manuscript was prepared by C. A. D. P., F. E. S. and D. C. C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Carneiro Carrettiero.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Cesar Augusto Dias de Paula and Fernando Enrique Santiago have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paula, C.A.D., Santiago, F.E., de Oliveira, A.S.A. et al. The Co-chaperone BAG2 Mediates Cold-Induced Accumulation of Phosphorylated Tau in SH-SY5Y Cells. Cell Mol Neurobiol 36, 593–602 (2016). https://doi.org/10.1007/s10571-015-0239-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-015-0239-x

Keywords

Navigation