Abstract
Cortical glial cells contain both ionotropic and metabotropic glutamate receptors. Despite several efforts, a comprehensive analysis of the entire family of glutamate receptors and their subunits present in glial cells is still missing. Here, we provide an overall picture of the gene expression of ionotropic (AMPA, kainate, NMDA) and the main metabotropic glutamate receptors in cortical glial cells isolated from GFAP/EGFP mice before and after focal cerebral ischemia. Employing single-cell RT-qPCR, we detected the expression of genes encoding subunits of glutamate receptors in GFAP/EGFP-positive (GFAP/EGFP+) glial cells in the cortex of young adult mice. Most of the analyzed cells expressed mRNA for glutamate receptor subunits, the expression of which, in most cases, even increased after ischemic injury. Data analyses disclosed several classes of GFAP/EGFP+ glial cells with respect to glutamate receptors and revealed in what manner their expression correlates with the expression of glial markers prior to and after ischemia. Furthermore, we also examined the protein expression and functional significance of NMDA receptors in glial cells. Immunohistochemical analyses of all seven NMDA receptor subunits provided direct evidence that the GluN3A subunit is present in GFAP/EGFP+ glial cells and that its expression is increased after ischemia. In situ and in vitro Ca2+ imaging revealed that Ca2+ elevations evoked by the application of NMDA were diminished in GFAP/EGFP+ glial cells following ischemia. Our results provide a comprehensive description of glutamate receptors in cortical GFAP/EGFP+ glial cells and may serve as a basis for further research on glial cell physiology and pathophysiology.
Similar content being viewed by others
References
Aronica E, van Vliet EA, Mayboroda OA et al (2000) Upregulation of metabotropic glutamate receptor subtype mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial temporal lobe epilepsy. Eur J Neurosci 12:2333–2344
Aronica E, Leenstra S, Jansen GH et al (2001) Expression of brain-derived neurotrophic factor and tyrosine kinase B receptor proteins in glioneuronal tumors from patients with intractable epilepsy: colocalization with N-methyl-D-aspartic acid receptor. Acta Neuropathol 101:383–392
Aronica E, Gorter JA, Ijlst-Keizers H et al (2003) Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur J Neurosci 17:2106–2118. doi:10.1046/j.1460-9568.2003.02657.x
Atlason PT, Garside ML, Meddows E et al (2007) N-Methyl-D-aspartate (NMDA) receptor subunit NR1 forms the substrate for oligomeric assembly of the NMDA receptor. J Biol Chem 282:25299–25307. doi:10.1074/jbc.M702778200
Benesova J, Rusnakova V, Honsa P et al (2012) Distinct expression/function of potassium and chloride channels contributes to the diverse volume regulation in cortical astrocytes of GFAP/EGFP mice. PLoS One 7:e29725. doi:10.1371/journal.pone.0029725
Brand-Schieber E, Lowery SL, Werner P (2004) Select ionotropic glutamate AMPA/kainate receptors are expressed at the astrocyte-vessel interface. Brain Res 1007:178–182. doi:10.1016/j.brainres.2003.12.051
Burnashev N, Khodorova A, Jonas P et al (1992) Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science 256:1566–1570
Burnashev N, Zhou Z, Neher E, Sakmann B (1995) Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J Physiol 485(Pt 2):403–418
Cahoy JD, Emery B, Kaushal A et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278. doi:10.1523/JNEUROSCI.4178-07.2008
Castillo C, Norcini M, Martin Hernandez LA et al (2013) Satellite glia cells in dorsal root ganglia express functional NMDA receptors. Neuroscience 240:135–146. doi:10.1016/j.neuroscience.2013.02.031
Cavara NA, Hollmann M (2008) Shuffling the deck anew: how NR3 tweaks NMDA receptor function. Mol Neurobiol 38:16–26. doi:10.1007/s12035-008-8029-9
Chowdhury D, Marco S, Brooks IM et al (2013) Tyrosine phosphorylation regulates the endocytosis and surface expression of GluN3A-containing NMDA receptors. J Neurosci 33(9):4151–4164
Conti F, DeBiasi S, Minelli A, Melone M (1996) Expression of NR1 and NR2A/B subunits of the NMDA receptor in cortical astrocytes. Glia 17:254–258. doi:10.1002/(SICI)1098-1136(199607)17:3<254:AID-GLIA7>3.0.CO;2-0
D’Antoni S, Berretta A, Bonaccorso CM et al (2008) Metabotropic glutamate receptors in glial cells. Neurochem Res 33:2436–2443. doi:10.1007/s11064-008-9694-9
Dzamba D, Honsa P, Anderova M (2013) NMDA receptors in glial cells: pending questions. Curr Neuropharmacol 11:250–262. doi:10.2174/1570159X11311030002
Ehlers MD, Zhang S, Bernhadt JP, Huganir RL (1996) Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 84:745–755
Evans RC, Morera-Herreras T, Cui Y et al (2012) The effects of NMDA subunit composition on calcium influx and spike timing-dependent plasticity in striatal medium spiny neurons. PLoS Comput Biol 8:e1002493. doi:10.1371/journal.pcbi.1002493
Gottlieb M, Matute C (1997) Expression of ionotropic glutamate receptor subunits in glial cells of the hippocampal CA1 area following transient forebrain ischemia. J Cereb Blood Flow Metab 17:290–300. doi:10.1097/00004647-199703000-00006
Haberlandt C, Derouiche A, Wyczynski A et al (2011) Gray matter NG2 cells display multiple Ca2+-signaling pathways and highly motile processes. PLoS One 6:e17575. doi:10.1371/journal.pone.0017575
Haydon P, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev. doi:10.1152/physrev.00049.2005
Hetman M, Kharebava G (2006) Survival signaling pathways activated by NMDA receptors. Curr Top Med Chem 6:787–799
Hollmann M, Hartley M, Heinemann S (1991) Ca2+ permeability of KA-AMPA–gated glutamate receptor channels depends on subunit composition. Science 252:851–853
Honsa P, Pivonkova H, Dzamba D et al (2012) Polydendrocytes display large lineage plasticity following focal cerebral ischemia. PLoS One 7:e36816. doi:10.1371/journal.pone.0036816
Káradóttir R, Cavelier P, Bergersen L, Attwell D (2005) NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438:1162–1166. doi:10.1038/nature04302.NMDA
Kehoe LA, Bernardinelli Y, Muller D (2013) GluN3A: an NMDA receptor subunit with exquisite properties and functions. Neural Plast 2013:145387. doi:10.1155/2013/145387
Kotermanski SE, Johnson JW (2009) Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine. J Neurosci 29:2774–2779. doi:10.1523/JNEUROSCI.3703-08.2009
Krebs C, Fernandes HB, Sheldon C et al (2003) Functional NMDA receptor subtype 2B is expressed in astrocytes after ischemia in vivo and anoxia in vitro. J Neurosci 23:3364–3372
Kukley M, Dietrich D (2009) Kainate receptors and signal integration by NG2 glial cells. Neuron Glia Biol 5:13–20
Lalo U, Pankratov Y, Kirchhoff F et al (2006) NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci 26:2673–2683. doi:10.1523/JNEUROSCI.4689-05.2006
Lalo U, Palygin O, Rasooli-Nejad S et al (2014) Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol 12:e1001747. doi:10.1371/journal.pbio.1001747
Lavezzari G, McCallum J, Dewey CM et al (2004) Subunit-specific regulation of NMDA receptor endocytosis. J Neurosci 24(28):6383–6391
Loane DJ, Stoica BA, Faden AI (2012) Metabotropic glutamate receptor-mediated signaling in neuroglia. Wiley Interdiscip Rev Membr Transp Signal 1:136–150. doi:10.1002/wmts.30
Matsuda K, Fletcher M, Kamiya Y, Yuzaki M (2003) Specific assembly with the NMDA receptor 3B subunit controls surface expression and calcium permeability of NMDA receptors. J Neurosci 23:10064–10073
Matthias K, Kirchhoff F, Seifert G et al (2003) Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J Neurosci 23:1750–1758
Nakahara K, Okada M, Nakanishi S (1997) The metabotropic glutamate receptor mGluR5 induces calcium oscillations in cultured astrocytes via protein kinase C phosphorylation. J Neurochem 69:1467–1475
Nolte C, Matyash M, Pivneva T et al (2001) GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33:72–86
Palygin O, Lalo U, Pankratov Y (2011) Distinct pharmacological and functional properties of NMDA receptors in mouse cortical astrocytes. Br J Pharmacol 163:1755–1766. doi:10.1111/j.1476-5381.2011.01374.x
Paoletti P (2011) Molecular basis of NMDA receptor functional diversity. Eur J Neurosci 33:1351–1365. doi:10.1111/j.1460-9568.2011.07628.x
Perez-Otano I, Schulteis CT, Contractor A et al (2001) Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J Neurosci 21:1228–1237
Porter JT, McCarthy KD (1995) GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+]i. Glia 13:101–112
Rusnakova V, Honsa P, Dzamba D et al (2013) Heterogeneity of astrocytes: from development to injury—single cell gene expression. PLoS One 8:e69734. doi:10.1371/journal.pone.0069734
Sasaki YF, Rothe T, Premkumar LS et al (2002) Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. J Neurophysiol 87:2052–2063. doi:10.1152/jn.00531.2001
Schipke CG, Ohlemeyer C, Matyash M et al (2001) Astrocytes of the mouse neocortex express functional N-methyl-D-aspartate receptors. FASEB J 15:1270–1272
Seifert G, Steinhäuser C (2001) Ionotropic glutamate receptors in astrocytes. Prog Brain Res 132:287–299. doi:10.1016/S0079-6123(01)32083-6
Serrano A, Haddjeri N, Lacaille J-C, Robitaille R (2006) GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. J Neurosci 26:5370–5382. doi:10.1523/JNEUROSCI.5255-05.2006
Serrano A, Robitaille R, Lacaille J-C (2008) Differential NMDA-dependent activation of glial cells in mouse hippocampus. Glia 56:1648–1663. doi:10.1002/glia.20717
Shigetomi E, Bushong EA, Haustein MD et al (2013) Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses. J Gen Physiol 141:633–647. doi:10.1085/jgp.201210949
Ståhlberg A, Bengtsson M (2010) Single-cell gene expression profiling using reverse transcription quantitative real-time PCR. Methods 50:282–288. doi:10.1016/j.ymeth.2010.01.002
Ståhlberg A, Andersson D, Aurelius J et al (2011) Defining cell populations with single-cell gene expression profiling: correlations and identification of astrocyte subpopulations. Nucleic Acids Res 39:e24. doi:10.1093/nar/gkq1182
Sun W, McConnell E, Pare J-F et al (2013) Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339:197–200. doi:10.1126/science.1226740
Ulas J, Satou T, Ivins KJ et al (2000) Expression of metabotropic glutamate receptor 5 is increased in astrocytes after kainate-induced epileptic seizures. Glia 30:352–361
Verkhratsky A (2009) Neuronismo y reticulismo: neuronal-glial circuits unify the reticular and neuronal theories of brain organization. Acta Physiol (Oxf) 195:111–122. doi:10.1111/j.1748-1716.2008.01926.x
Verkhratsky A, Kirchhoff F (2007) NMDA receptors in glia. Neuroscientist 13:28–37. doi:10.1177/1073858406294270
Vermeiren C, Najimi M, Vanhoutte N et al (2005) Acute up-regulation of glutamate uptake mediated by mGluR5a in reactive astrocytes. J Neurochem 94:405–416. doi:10.1111/j.1471-4159.2005.03216.x
Acknowledgments
This study was supported by the Grants GA CR P304/12/G069 and GACR 13-02154S from the Grant Agency of the Czech Republic, GAUK 604212 from the Grant Agency of the Charles University in Prague, CZ.1.05/1.1.00/02.0109 from the European Regional Development Fund, and CZ.1.07/2.3.00/30.0045 from the European Social Fund and the state budget of the Czech Republic.
Conflict of interest
The authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Online Resource 1
Complete list of Spearman correlation coefficients between genes coding glutamate receptor subunits and markers of NG2 glia/astrocytes in control mice (CTRL) and mice 7 and 14 days after MCAo (D7, D14). The correlation coefficients were calculated from all cells including those without gene expression
Rights and permissions
About this article
Cite this article
Dzamba, D., Honsa, P., Valny, M. et al. Quantitative Analysis of Glutamate Receptors in Glial Cells from the Cortex of GFAP/EGFP Mice Following Ischemic Injury: Focus on NMDA Receptors. Cell Mol Neurobiol 35, 1187–1202 (2015). https://doi.org/10.1007/s10571-015-0212-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10571-015-0212-8