Skip to main content

Advertisement

Log in

MiR-218 Inhibited Growth and Metabolism of Human Glioblastoma Cells by Directly Targeting E2F2

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In recent years, microRNA has become a hotspot in research on diseases, especially in the initiation and progression of different types of cancer. In this study, we found that miR-218 could inhibit growth and metabolism in gliomas by directly targeting E2F2. First, we obtained data from the Chinese Glioma Genome Atlas (CGGA) database to analyze miR-218 expression in different grades of gliomas. The effects of miR-218 on cell cycle progression and cell proliferation in U87 and U251 cell lines were investigated by flow cytometry, specifically CCK8 assay and tablet cloning, respectively. Glucose consumption and lactate production of glioma cell lines were measured by correlative test kits. Furthermore, we used Western blot analysis and luciferase reporter assay to identify the direct and functional target of miR-218. Data from the CGGA database and real-time quantitative reverse transcription-PCR demonstrated that miR-218 was obviously reduced in human glioblastoma tissues, as well as in the cell lines. When miR-218 level was elevated in vitro, cell cycle progression was arrested in the G1 phase, and cell proliferation was dramatically inhibited. Both glucose consumption and lactate production of glioma cells were significantly reduced. Western blot analysis and luciferase reporter assay revealed that E2F2 was a direct target of miR-218 in glioma cells. This investigation demonstrated that elevated E2F2 expression could partly weaken the effect of miR-218 in vitro. This study also showed that miR-218 may be a repressor in glioma by directly targeting E2F2, as well as a potential therapeutic target in gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Babashah S, Soleimani M (2011) The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis. Eur J Cancer 47(8):1127–1137. doi:10.1016/j.ejca.2011.02.008

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  • Chen HZ, Tsai SY, Leone G (2009) Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer 9(11):785–797. doi:10.1038/nrc2696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DeGregori J (2002) The genetics of the E2F family of transcription factors: shared functions and unique roles. Biochim Biophys Acta 1602(2):131–150

    CAS  PubMed  Google Scholar 

  • Ivey-Hoyle M, Conroy R, Huber HE, Goodhart PJ, Oliff A, Heimbrook DC (1993) Cloning and characterization of E2F-2, a novel protein with the biochemical properties of transcription factor E2F. Mol Cell Biol 13(12):7802–7812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kovesdi I, Reichel R, Nevins JR (1986) Identification of a cellular transcription factor involved in E1A trans-activation. Cell 45(2):219–228

    Article  CAS  PubMed  Google Scholar 

  • Kovesdi I, Reichel R, Nevins JR (1987) Role of an adenovirus E2 promoter binding factor in E1A-mediated coordinate gene control. Proc Natl Acad Sci USA 84(8):2180–2184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20. doi:10.1016/j.cell.2004.12.035

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{{ - \Delta \Delta {\text C} {\text t}}}\) Method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

  • Mathew LK, Skuli N, Mucaj V, Lee SS, Zinn PO, Sathyan P, Imtiyaz HZ, Zhang Z, Davuluri RV, Rao S, Venneti S, Lal P, Lathia JD, Rich JN, Keith B, Minn AJ, Simon MC (2014) miR-218 opposes a critical RTK-HIF pathway in mesenchymal glioblastoma. Proc Natl Acad Sci USA 111(1):291–296. doi:10.1073/pnas.1314341111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nevins JR (1992) E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258(5081):424–429

    Article  CAS  PubMed  Google Scholar 

  • Opavsky R, Tsai SY, Guimond M, Arora A, Opavska J, Becknell B, Kaufmann M, Walton NA, Stephens JA, Fernandez SA, Muthusamy N, Felsher DW, Porcu P, Caligiuri MA, Leone G (2007) Specific tumor suppressor function for E2F2 in Myc-induced T cell lymphomagenesis. Proc Natl Acad Sci USA 104(39):15400–15405. doi:10.1073/pnas.0706307104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reimer D, Sadr S, Wiedemair A, Goebel G, Concin N, Hofstetter G, Marth C, Zeimet AG (2006) Expression of the E2F family of transcription factors and its clinical relevance in ovarian cancer. Ann N Y Acad Sci 1091:270–281. doi:10.1196/annals.1378.073

    Article  CAS  PubMed  Google Scholar 

  • Reimer D, Sadr S, Wiedemair A, Stadlmann S, Concin N, Hofstetter G, Muller-Holzner E, Marth C, Zeimet AG (2007) Clinical relevance of E2F family members in ovarian cancer–an evaluation in a training set of 77 patients. Clin Cancer Res 13(1):144–151. doi:10.1158/1078-0432.CCR-06-0780

    Article  CAS  PubMed  Google Scholar 

  • Setty M, Helmy K, Khan AA, Silber J, Arvey A, Neezen F, Agius P, Huse JT, Holland EC, Leslie CS (2012) Inferring transcriptional and microRNA-mediated regulatory programs in glioblastoma. Mol Syst Biol 8:605. doi:10.1038/msb.2012.37

    Article  PubMed Central  PubMed  Google Scholar 

  • Song L, Huang Q, Chen K, Liu L, Lin C, Dai T, Yu C, Wu Z, Li J (2010) miR-218 inhibits the invasive ability of glioma cells by direct downregulation of IKK-beta. Biochem Biophys Res Commun 402(1):135–140. doi:10.1016/j.bbrc.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Eng J Med 352(10):987–996. doi:10.1056/NEJMoa043330

    Article  CAS  Google Scholar 

  • Suzuki DE, Nakahata AM, Okamoto OK (2014) Knockdown of E2F2 inhibits tumorigenicity, but preserves stemness of human embryonic stem cells. Stem Cells Dev 23(11):1266–1274. doi:10.1089/scd.2013.0592

    Article  CAS  PubMed  Google Scholar 

  • Tu Y, Gao X, Li G, Fu H, Cui D, Liu H, Jin W, Zhang Y (2013) MicroRNA-218 inhibits glioma invasion, migration, proliferation, and cancer stem-like cell self-renewal by targeting the polycomb group gene Bmi1. Cancer Res 73(19):6046–6055. doi:10.1158/0008-5472.CAN-13-0358

    Article  CAS  PubMed  Google Scholar 

  • Wu N, Xiao L, Zhao X, Zhao J, Wang J, Wang F, Cao S, Lin X (2012) miR-125b regulates the proliferation of glioblastoma stem cells by targeting E2F2. FEBS Lett 586(21):3831–3839. doi:10.1016/j.febslet.2012.08.023

    Article  CAS  PubMed  Google Scholar 

  • Yeh CT, Huang WC, Rao YK, Ye M, Lee WH, Wang LS, Tzeng DT, Wu CH, Shieh YS, Huang CY, Chen YJ, Hsiao M, Wu AT, Yang Z, Tzeng YM (2013) A sesquiterpene lactone antrocin from Antrodia camphorata negatively modulates JAK2/STAT3 signaling via microRNA let-7c and induces apoptosis in lung cancer cells. Carcinogenesis 34(12):2918–2928. doi:10.1093/carcin/bgt255

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National High Technology Research and Development Program of China (863) (2012AA02A508), International Cooperation Program (2012DFA30470), National Natural Science Foundation of China (National Natural Science Foundation of China) (91229121, 81272792, 81472362, 81372709, 81302185), Jiangsu Province’s Natural Science Foundation (20131019), Jiangsu Province’s Key Provincial Talents Program (RC2011051), Jiangsu Province’s Key Discipline of Medicine (XK201117), Jiangsu Provincial Special Program of Medical Science (BL2012028), and Program for Development of Innovative Research Team in the First Affiliated Hospital of NJMU, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Conflict of interest

The authors declare no conflict of interest in this article.

Ethical Statement

This study was approved by the Institutional Review Board and Ethics Committee of Nanjing Medical University, and written informed consent was signed by all participants.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingyi Wang or Ning Liu.

Additional information

Yaxuan Zhang, Dongfeng Han, and Wenjin Wei have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Han, D., Wei, W. et al. MiR-218 Inhibited Growth and Metabolism of Human Glioblastoma Cells by Directly Targeting E2F2. Cell Mol Neurobiol 35, 1165–1173 (2015). https://doi.org/10.1007/s10571-015-0210-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-015-0210-x

Keywords

Navigation