Skip to main content

Advertisement

Log in

Identification of miRNAs Involved in the Protective Effect of Sevoflurane Preconditioning Against Hypoxic Injury in PC12 Cells

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The mechanism of sevoflurane preconditioning-induced neuroprotection is poorly understood. This study was aimed at identifying microRNAs (miRNAs) involved in the protective effect of sevoflurane preconditioning against hypoxic injury using the miRCURYTM LNA Array. The screened differentially expressed miRNAs were further validated using qRT-PCR. Finally, after transfection of miRNA (miR-101a or miR-34b) mimics or inhibitor, MTT and flow cytometry assays were used to evaluate cell survival and apoptosis in sevoflurane preconditioning. qRT-PCR confirmed the changes in expression of differentially expressed miRNAs that were screened by the microarray: down-regulation of rno-miR-101a, rno-miR-106b, and rno-miR-294 and up-regulation of rno-miR-883, rno-miR-16, and rno-miR-34b. MiR-101a and miR-34b were the most differentially expressed miRNAs. Sevoflurane preconditioning-inhibited apoptosis and preconditioning-enhanced cell viability of PC12 cells were significantly attenuated by transfection of miR-101a mimetic or miR-34b inhibitors, but were significantly enhanced by transfection of miR-34b mimetic. Therefore, a number of miRNAs, including miR-101a and miR-34b, might play important roles in the neuroprotection induced by sevoflurane preconditioning. Such miRNAs might provide novel targets for preventive and therapeutic strategies against cerebral ischemia–reperfusion injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beitner-Johnson D, Rust RT, Hsieh T, Millhorn DE (2000) Regulation of CREB by moderate hypoxia in PC12 cells. Adv Exp Med Biol 475:143–152

    Article  CAS  PubMed  Google Scholar 

  • Boutros A, Wang J, Capuano C (1997) Isoflurane and halothane increase adenosine triphosphate preservation, but do not provide additive recovery of function after ischemia, in preconditioned rat hearts. Anesthesiology 86:109–117

    Article  CAS  PubMed  Google Scholar 

  • Clarkson AN (2007) Anesthetic-mediated protection/preconditioning during cerebral ischemia. Life Sci 80:1157–1175

    Article  CAS  PubMed  Google Scholar 

  • Codaccioni JL, Velly LJ, Moubarik C, Bruder NJ, Pisano PS, Guillet BA (2009) Sevoflurane preconditioning against focal cerebral ischemia: inhibition of apoptosis in the face of transient improvement of neurological outcome. Anesthesiology 110:1271–1278

    Article  CAS  PubMed  Google Scholar 

  • Cope DK, Impastato WK, Cohen MV, Downey JM (1997) Volatile anesthetics protect the ischemic rabbit myocardium from infarction. Anesthesiology 86:699–709

    Article  CAS  PubMed  Google Scholar 

  • Das KP, Freudenrich TM, Mundy WR (2004) Assessment of PC12 cell differentiation and neurite growth: a comparison of morphological and neurochemical measures. Neurotoxicol Teratol 26:397–406

    Article  CAS  PubMed  Google Scholar 

  • Gozal E, Sachleben LR Jr, Rane MJ, Vega C, Gozal D (2005) Mild sustained and intermittent hypoxia induce apoptosis in PC-12 cells via different mechanisms. Am J Physiol 288:C535–542

    Article  CAS  Google Scholar 

  • Heiss WD, Graf R (1994) The ischemic penumbra. Curr Opin Neurol 7:11–19

    Article  CAS  PubMed  Google Scholar 

  • Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17:193–199

    Article  CAS  PubMed  Google Scholar 

  • Hu K, Xie YY, Zhang C, Ouyang DS, Long HY, Sun DN et al (2012) MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus. BMC Neurosci 13:115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamiya T, Kwon AH, Kanemaki T, Matsui Y, Uetsuji S, Okumura T, Kamiyama Y (1998) A simplified model of hypoxic injury in primary cultured rat hepatocytes. In Vitro Cell Dev Biol Anim 34:131–137

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Yokoyama K, Makita K (2005) Late preconditioning with isoflurane in cultured rat cortical neurones. Br J Anaesth 95:662–668

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi M, Drummond JC, Cole DJ, Kelly PJ, Spurlock MP, Patel PM (2004) Effect of isoflurane on neuronal apoptosis in rats subjected to focal cerebral ischemia. Anesth Analg 98:798–805

    Article  CAS  PubMed  Google Scholar 

  • Kitano H, Kirsch JR, Hurn PD, Murphy SJ (2007) Inhalational anesthetics as neuroprotectants or chemical preconditioning agents in ischemic brain. J Cereb Blood Flow Metab 27:1108–1128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kosik KS (2006) The neuronal microRNA system. Nat Rev 7:911–920

    Article  CAS  Google Scholar 

  • Lehane C, Guelzow T, Zenker S, Erxleben A, Schwer CI, Heimrich B et al (2013) Carbimazole is an inhibitor of protein synthesis and protects from neuronal hypoxic damage in vitro. J Pharmacol Exp Ther 347:781–793

    Article  CAS  PubMed  Google Scholar 

  • Li X, Luo P, Wang F, Yang Q, Li Y, Zhao M et al (2014) Inhibition of N-myc downstream-regulated gene-2 is involved in an astrocyte-specific neuroprotection induced by sevoflurane preconditioning. Anesthesiology 121:549–562

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Yang D, Xie P, Ren G, Sun G, Zeng X, Sun X (2012) MiR-106b and MiR-15b modulate apoptosis and angiogenesis in myocardial infarction. Cell Physiol Biochem 29:851–862

    Article  CAS  PubMed  Google Scholar 

  • Pompili M, Venturini P, Campi S, Seretti ME, Montebovi F, Lamis DA et al (2012) Do stroke patients have an increased risk of developing suicidal ideation or dying by suicide? An overview of the current literature. CNS Neurosci Ther 18:711–721

    Article  PubMed  Google Scholar 

  • Serafini G, Pompili M, Innamorati M, Giordano G, Montebovi F, Sher L et al (2012) The role of microRNAs in synaptic plasticity, major affective disorders and suicidal behavior. Neurosci Res 73:179–190

    Article  CAS  PubMed  Google Scholar 

  • Shukla GC, Singh J, Barik S (2011) MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol 3:83–92

    PubMed Central  CAS  PubMed  Google Scholar 

  • Toner CC, Connelly K, Whelpton R, Bains S, Michael-Titus AT, McLaughlin DP, Stamford JA (2001) Effects of sevoflurane on dopamine, glutamate and aspartate release in an in vitro model of cerebral ischaemia. Br J Anaesth 86:550–554

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Lu S, Yu Q, Liang W, Gao H, Li P et al (2011) Sevoflurane preconditioning confers neuroprotection via anti-inflammatory effects. Front Biosci 3:604–615

    Article  Google Scholar 

  • Wang L, Li L, Guo R, Li X, Lu Y, Guan X et al (2014) miR-101 promotes breast cancer cell apoptosis by targeting Janus kinase 2. Cell Physiol Biochem 34:413–422

    Article  CAS  PubMed  Google Scholar 

  • Wolf PA (1998) Prevention of stroke. Lancet 352(Suppl 3):SIII15–18

    Article  PubMed  Google Scholar 

  • Xu Y, An Y, Wang Y, Zhang C, Zhang H, Huang C et al (2013) miR-101 inhibits autophagy and enhances cisplatin-induced apoptosis in hepatocellular carcinoma cells. Oncol Rep 29:2019–2024

    CAS  PubMed  Google Scholar 

  • Yang Q, Dong H, Deng J, Wang Q, Ye R, Li X et al (2011) Sevoflurane preconditioning induces neuroprotection through reactive oxygen species-mediated up-regulation of antioxidant enzymes in rats. Anesth Analg 112:931–937

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Yan W, Li X, Hou L, Dong H, Wang Q et al (2012) Activation of canonical notch signaling pathway is involved in the ischemic tolerance induced by sevoflurane preconditioning in mice. Anesthesiology 117:996–1005

    Article  CAS  PubMed  Google Scholar 

  • Yellon DM, Dana A (2000) The preconditioning phenomenon: a tool for the scientist or a clinical reality? Circ Res 87:543–550

    Article  CAS  PubMed  Google Scholar 

  • Zhong X, Lin R, Li Z, Mao J, Chen L (2014) Effects of Salidroside on cobalt chloride-induced hypoxia damage and mTOR signaling repression in PC12 cells. Biol Pharm Bull 37:1199–1206

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript.

Ethical standards

No Human Participants and/or Animals were involved in this research, and we have read and have abided by the statement of ethical standards for manuscript submitted to Cellular and Molecular Neurobiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanhai Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Li, Y., Liu, L. et al. Identification of miRNAs Involved in the Protective Effect of Sevoflurane Preconditioning Against Hypoxic Injury in PC12 Cells. Cell Mol Neurobiol 35, 1117–1125 (2015). https://doi.org/10.1007/s10571-015-0205-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-015-0205-7

Keywords

Navigation