Cellular and Molecular Neurobiology

, Volume 35, Issue 7, pp 921–930 | Cite as

Protective Effect of Pyrroloquinoline Quinone (PQQ) in Rat Model of Intracerebral Hemorrhage

  • Hongjian Lu
  • Jiabing Shen
  • Xinjian Song
  • Jianbin Ge
  • Rixin Cai
  • Aihua Dai
  • Zhongli JiangEmail author
Original Research


Pyrroloquinoline quinone (PQQ) has invoked considerable interest because of its presence in foods, antioxidant properties, cofactor of dehydrogenase, and amine oxidase. Protective roles of PQQ in central nervous system diseases, such as experimental stroke and spinal cord injury models have been emerged. However, it is unclear whether intracerebral hemorrhage (ICH), as an acute devastating disease, can also benefit from PQQ in experimental conditions. Herein, we examined the possible effect of PQQ on neuronal functions following ICH in the adult rats. The results showed that rats pretreated with PQQ at 10 mg/kg effectively improved the locomotor functions, alleviated the hematoma volumes, and reduced the expansion of brain edema after ICH. Also, pretreated rats with PQQ obviously reduced the production of reactive oxygen species after ICH, probably due to its antioxidant properties. Further, we found that, Bcl-2/Bax, the important indicator of oxidative stress insult in mitochondria after ICH, exhibited increasing ratio in PQQ-pretreated groups. Moreover, activated caspase-3, the apoptotic executor, showed coincident alleviation in PQQ groups after ICH. Collectively, we speculated that PQQ might be an effective and potential neuroprotectant in clinical therapy for ICH.


PQQ ICH ROS Neuroprotectant Rat 



We thank Dr. Aiguo Shen of Nantong University for his advice and great help on this paper. This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Conflict of interest

The authors declare no conflict of interest.


  1. Aizenman E, Jensen FE, Gallop PM, Rosenberg PA, Tang LH (1994) Further evidence that pyrroloquinoline quinone interacts with the N-methyl-D-aspartate receptor redox site in rat cortical neurons in vitro. Neurosci Lett 168(1–2):189–192CrossRefPubMedGoogle Scholar
  2. Anderson CS, Heeley E, Huang Y, Wang J, Stapf C, Delcourt C, Lindley R, Robinson T, Lavados P, Neal B, Hata J, Arima H, Parsons M, Li Y, Heritier S, Li Q, Woodward M, Simes RJ, Davis SM, Chalmers J (2013) Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med 368(25):2355–2365CrossRefPubMedGoogle Scholar
  3. Barratt HE, Lanman TA, Carmichael ST (2014) Mouse intracerebral hemorrhage models produce different degrees of initial and delayed damage, axonal sprouting, and recovery. J Cereb Blood Flow Metab 34(9):1463–1471PubMedCentralCrossRefPubMedGoogle Scholar
  4. Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats statistical validation. Stroke 26(4):627–634 discussion 635CrossRefPubMedGoogle Scholar
  5. Hara H, Hiramatsu H, Adachi T (2007) Pyrroloquinoline quinone is a potent neuroprotective nutrient against 6-hydroxydopamine-induced neurotoxicity. Neurochem Res 32(3):489–495CrossRefPubMedGoogle Scholar
  6. Hirakawa A, Shimizu K, Fukumitsu H, Furukawa S (2009) Pyrroloquinoline quinone attenuates iNOS gene expression in the injured spinal cord. Biochem Biophys Res Commun 378(2):308–312CrossRefPubMedGoogle Scholar
  7. Hiraku Y, Kawanishi S (1996) NADH-mediated DNA damage induced by a new coenzyme, pyrroloquinoline quinone, in the presence of copper(II) ion. FEBS Lett 393(2–3):317–320CrossRefPubMedGoogle Scholar
  8. Kasahara T, Kato T (2003) Nutritional biochemistry: a new redox-cofactor vitamin for mammals. Nature 422(6934):832CrossRefPubMedGoogle Scholar
  9. Ke K, Li L, Rui Y, Zheng H, Tan X, Xu W, Cao J, Xu J, Cui G, Xu G, Cao M (2013) Increased expression of small heat shock protein alphaB-crystallin after intracerebral hemorrhage in adult rats. J Mol Neurosci 51(1):159–169CrossRefPubMedGoogle Scholar
  10. Krafft PR, McBride DW, Lekic T, Rolland WB, Mansell CE, Ma Q, Tang J, Zhang JH (2014) Correlation between subacute sensorimotor deficits and brain edema in two mouse models of intracerebral hemorrhage. Behav Brain Res 264:151–160PubMedCentralCrossRefPubMedGoogle Scholar
  11. Kumar N, Kar A (2014) Pyrroloquinoline quinone ameliorates oxidative stress and lipid peroxidation in the brain of streptozotocin-induced diabetic mice. Can J Physiol Pharmacol 93:1–9Google Scholar
  12. Kuramatsu JB, Huttner HB, Schwab S (2013) Advances in the management of intracerebral hemorrhage. J Neural Transm 120(Suppl 1):S35–S41CrossRefPubMedGoogle Scholar
  13. Liu Z, Zhao W, Xu T, Pei D, Peng Y (2010) Alterations of NMDA receptor subunits NR1, NR2A and NR2B mRNA expression and their relationship to apoptosis following transient forebrain ischemia. Brain Res 1361:133–139CrossRefPubMedGoogle Scholar
  14. Mokrushin AA, Pavlinova LI (2013) Effects of the blood components on the AMPA and NMDA synaptic responses in brain slices in the onset of hemorrhagic stroke. Gen Physiol Biophys 32(4):489–504CrossRefPubMedGoogle Scholar
  15. Naito Y, Kumazawa T, Kino I, Suzuki O (1993) Effects of pyrroloquinoline quinone (PQQ) and PQQ-oxazole on DNA synthesis of cultured human fibroblasts. Life Sci 52(24):1909–1915CrossRefPubMedGoogle Scholar
  16. Nakano M, Suzuki H, Imamura T, Lau A, Lynch B (2013) Genotoxicity of pyrroloquinoline quinone (PQQ) disodium salt (BioPQQ). Regul Toxicol Pharmacol 67(2):189–197CrossRefPubMedGoogle Scholar
  17. Nunome K, Miyazaki S, Nakano M, Iguchi-Ariga S, Ariga H (2008) Pyrroloquinoline quinone prevents oxidative stress-induced neuronal death probably through changes in oxidative status of DJ-1. Biol Pharm Bull 31(7):1321–1326CrossRefPubMedGoogle Scholar
  18. Ohwada K, Takeda H, Yamazaki M, Isogai H, Nakano M, Shimomura M, Fukui K, Urano S (2008) Pyrroloquinoline quinone (PQQ) prevents cognitive deficit caused by oxidative stress in rats. J Clin Biochem Nutr 42:29–34PubMedCentralCrossRefPubMedGoogle Scholar
  19. Pandya CD, Howell KR, Pillai A (2013) Antioxidants as potential therapeutics for neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 46:214–223PubMedCentralCrossRefPubMedGoogle Scholar
  20. Park G, Park YJ, Yang HO, Oh MS (2013) Ropinirole protects against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced neurotoxicity in mice via anti-apoptotic mechanism. Pharmacol Biochem Behav 104:163–168CrossRefPubMedGoogle Scholar
  21. Sanchez RM, Wang C, Gardner G, Orlando L, Tauck DL, Rosenberg PA, Aizenman E, Jensen FE (2000) Novel role for the NMDA receptor redox modulatory site in the pathophysiology of seizures. J Neurosci 20(6):2409–2417PubMedGoogle Scholar
  22. Scanlon JM, Aizenman E, Reynolds IJ (1997) Effects of pyrroloquinoline quinone on glutamate-induced production of reactive oxygen species in neurons. Eur J Pharmacol 326(1):67–74CrossRefPubMedGoogle Scholar
  23. Sharp F, Liu DZ, Zhan X, Ander BP (2008) Intracerebral hemorrhage injury mechanisms: glutamate neurotoxicity, thrombin, and Src. Acta Neurochir Suppl 105:43–46CrossRefPubMedGoogle Scholar
  24. Singh AK, Pandey SK, Naresh Kumar G (2014) Pyrroloquinoline quinone-secreting probiotic Escherichia coli Nissle 1917 ameliorates ethanol-induced oxidative damage and hyperlipidemia in rats. Alcohol Clin Exp Res 38(7):2127–2137CrossRefPubMedGoogle Scholar
  25. Stites TE, Mitchell AE, Rucker RB (2000) Physiological importance of quinoenzymes and the O-quinone family of cofactors. J Nutr 130(4):719–727PubMedGoogle Scholar
  26. Sukumari-Ramesh S, Alleyne CH Jr, Dhandapani KM (2012) Astrocyte-specific expression of survivin after intracerebral hemorrhage in mice: a possible role in reactive gliosis? J Neurotrauma 29(18):2798–2804PubMedCentralCrossRefPubMedGoogle Scholar
  27. Tang J, Liu J, Zhou C, Alexander JS, Nanda A, Granger DN, Zhang JH (2004) Mmp-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. J Cereb Blood Flow Metab 24(10):1133–1145CrossRefPubMedGoogle Scholar
  28. Tao R, Karliner JS, Simonis U, Zheng J, Zhang J, Honbo N, Alano CC (2007) Pyrroloquinoline quinone preserves mitochondrial function and prevents oxidative injury in adult rat cardiac myocytes. Biochem Biophys Res Commun 363(2):257–262PubMedCentralCrossRefPubMedGoogle Scholar
  29. Thomas RR, Khan SM, Portell FR, Smigrodzki RM, Bennett JP Jr (2011) Recombinant human mitochondrial transcription factor A stimulates mitochondrial biogenesis and ATP synthesis, improves motor function after MPTP, reduces oxidative stress and increases survival after endotoxin. Mitochondrion 11(1):108–118PubMedCentralCrossRefPubMedGoogle Scholar
  30. Watanabe A, Hobara N, Ohsawa T, Higashi T, Tsuji T (1989) Nephrotoxicity of pyrroloquinoline quinone in rats. Hiroshima J Med Sci 38(1):49–51PubMedGoogle Scholar
  31. Wu J, Yang S, Xi G, Song S, Fu G, Keep RF, Hua Y (2008) Microglial activation and brain injury after intracerebral hemorrhage. Acta Neurochir Suppl 105:59–65CrossRefPubMedGoogle Scholar
  32. Xi G, Keep RF, Hoff JT (2002) Pathophysiology of brain edema formation. Neurosurg Clin N Am 13(3):371–383CrossRefPubMedGoogle Scholar
  33. Yamaguchi K, Sasano A, Urakami T, Tsuji T, Kondo K (1993) Stimulation of nerve growth factor production by pyrroloquinoline quinone and its derivatives in vitro and in vivo. Biosci Biotechnol Biochem 57(7):1231–1233CrossRefPubMedGoogle Scholar
  34. Yamaguchi K, Tsuji T, Uemura D, Kondo K (1996) Cyclooxygenase induction is essential for NGF synthesis enhancement by NGF inducers in L-M cells. Biosci Biotechnol Biochem 60(1):92–94CrossRefPubMedGoogle Scholar
  35. Yang Z, Yu A, Liu Y, Shen H, Lin C, Lin L, Wang S, Yuan B (2014) Regulatory T cells inhibit microglia activation and protect against inflammatory injury in intracerebral hemorrhage. Int Immunopharmacol 22(2):522–525CrossRefPubMedGoogle Scholar
  36. Zha H, Reed JC (1997) Heterodimerization-independent functions of cell death regulatory proteins Bax and Bcl-2 in yeast and mammalian cells. J Biol Chem 272(50):31482–31488CrossRefPubMedGoogle Scholar
  37. Zhang Y, Feustel PJ, Kimelberg HK (2006) Neuroprotection by pyrroloquinoline quinone (PQQ) in reversible middle cerebral artery occlusion in the adult rat. Brain Res 1094(1):200–206CrossRefPubMedGoogle Scholar
  38. Zhang P, Xu Y, Sun J, Li X, Wang L, Jin L (2009) Protection of pyrroloquinoline quinone against methylmercury-induced neurotoxicity via reducing oxidative stress. Free Radic Res 43(3):224–233CrossRefPubMedGoogle Scholar
  39. Zhang Q, Shen M, Ding M, Shen D, Ding F (2011) The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3 K/Akt pathway. Toxicol Appl Pharmacol 252(1):62–72CrossRefPubMedGoogle Scholar
  40. Zhang L, Liu J, Cheng C, Yuan Y, Yu B, Shen A, Yan M (2012) The neuroprotective effect of pyrroloquinoline quinone on traumatic brain injury. J Neurotrauma 29(5):851–864PubMedCentralCrossRefPubMedGoogle Scholar
  41. Zhao X, Sun G, Zhang J, Strong R, Song W, Gonzales N, Grotta JC, Aronowski J (2007) Hematoma resolution as a target for intracerebral hemorrhage treatment: role for peroxisome proliferator-activated receptor gamma in microglia/macrophages. Ann Neurol 61(4):352–362CrossRefPubMedGoogle Scholar
  42. Zhao X, Grotta J, Gonzales N, Aronowski J (2009) Hematoma resolution as a therapeutic target: the role of microglia/macrophages. Stroke 40(3 Suppl):S92–S94CrossRefPubMedGoogle Scholar
  43. Zhou X, Chen Q, Hu X, Mao S, Kong Y (2014) Pyrroloquinoline quinone prevents MK-801-induced stereotypical behavior and cognitive deficits in mice. Behav Brain Res 258:153–159CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hongjian Lu
    • 1
    • 2
  • Jiabing Shen
    • 3
    • 4
  • Xinjian Song
    • 2
  • Jianbin Ge
    • 2
  • Rixin Cai
    • 4
  • Aihua Dai
    • 3
    • 4
  • Zhongli Jiang
    • 1
    Email author
  1. 1.Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
  2. 2.The Second People’s Hospital of NantongNantongChina
  3. 3.Department of NeurologyAffiliated Hospital of Nantong UniversityNantongChina
  4. 4.Jiangsu Province Key Laboratory for Inflammation and Molecular Drug TargetMedical College of Nantong UniversityNantongChina

Personalised recommendations