Skip to main content
Log in

Mechanisms Involved in the Ischemic Tolerance in Brain: Effect of the Homocysteine

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hyperhomocysteinemia (hHCy) is recognized as a co-morbid risk factor of human stroke. It also aggravates the ischemia-induced injury by increased production of reactive oxygen species, and by the homocysteinylation and thiolation of functional proteins. Ischemic preconditioning represents adaptation of the CNS to sub-lethal ischemia, resulting in increased brain tolerance to subsequent ischemia. We present here an overview of recent data on the homocysteine (Hcy) metabolism and on the genetic and metabolic causes of hHCy-related neuropathologies in humans. In this context, the review documents for an increased oxidative stress and for the functional modifications of enzymes involved in the redox balance in experimentally induced hHCy. Hcy metabolism leads also to the redox imbalance and increased oxidative stress resulting in elevated lipoperoxidation and protein oxidation, the products known to be included in the neuronal degeneration. Additionally, we examine the effect of the experimental hHCy in combination with ischemic insult, and/or with the preischemic challenge on the extent of neuronal degeneration as well as the intracellular signaling and the regulation of DNA methylation. The review also highlights that identification of the effects of co-morbid factors in the mechanisms of ischemic tolerance mechanisms would lead to improved therapeutics, especially the brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ataie A, Ataee R, Mansoury Z, Aghajanpour M (2013) Homocysteine intracerebroventricular injection induces apoptosis in the substantia nigra cells and Parkinson’s disease like behavior in rats. Int J Mol Cell Med 2:80–85

    PubMed Central  PubMed  Google Scholar 

  • Baldelli E, Leo G, Andreoli N, Fuxe K, Biagini G, Agnati LF (2010) Homocysteine potentiates seizures and cell loss induced by pilocarpine treatment. Neuromolecular Med 12:248–259

    Article  CAS  PubMed  Google Scholar 

  • Boldyrev A, Bryushkova E, Mashkina A, Vladychenskaya E (2013) Why is homocysteine toxic for the nervous and immune systems? Curr Aging Sci 6:29–36

    Article  CAS  PubMed  Google Scholar 

  • Borowczyk K, Shih DM, Jakubowski H (2012) Metabolism and neurotoxicity of homocysteine thiolactone in mice: evidence for a protective role of paraoxonase 1. J Alzheimers Dis 30:225–231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choe YM, Sohn BK, Choi HJ, Byun MS, Seo EH, Han JY, Kim YK, Yoon EJ, Lee JM, Park J, Woo JI, Lee DY (2014) Association of homocysteine with hippocampal volume independent of cerebral amyloid and vascular burden. Neurobiol Aging 35:1519–1525

    Article  CAS  PubMed  Google Scholar 

  • Cox-Limpens KE, Gavilanes AW, Zimmermann LJ, Vles JS (2014) Endogenous brain protection: what the cerebral transcriptome teaches us. Brain Res 1564:85–100

    Article  CAS  PubMed  Google Scholar 

  • da Cunha MJ, da Cunha AA, Ferreira AG, Machado FR, Schmitz F, Lima DD, Delwing D, Mussulini BH, Wofchuk S, Netto CA, Wyse AT (2012) Physical exercise reverses glutamate uptake and oxidative stress effects of chronic homocysteine administration in the rat. Int J Dev Neurosci 30:69–74

    Article  PubMed  Google Scholar 

  • Danielisova V, Gottlieb M, Bonova P, Nemethova M, Burda J (2014) Bradykinin postconditioning ameliorates focal cerebral ischemia in the rat. Neurochem Int 72:22–29

    Article  CAS  PubMed  Google Scholar 

  • Danielisová V, Gottlieb M, Némethová M, Burda J (2007) Activities of endogenous antioxidant enzymes in the cerebrospinal fluid and the hippocampus after transient forebrain ischemia in rat. J Neurol Sci 253:61–65

    Article  PubMed  Google Scholar 

  • Dayal S, Arning E, Bottiglieri T, Boger RH, Sigmund CD, Faraci FM, Lentz SR (2004) Cerebral vascular dysfunction mediated by superoxide in hyperhomocysteinemic mice. Stroke 35:1957–1962

    Article  CAS  PubMed  Google Scholar 

  • Dionisio N, Jardin I, Salido GM, Rosado JA (2010) Homocysteine, intracellular signaling and thrombotic disorders. Curr Med Chem 17:3109–3119

    Article  CAS  PubMed  Google Scholar 

  • Dirnagl U, Becker K, Meisel A (2009) Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol 8:398–412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Domagała TB, Łacinski M, Trzeciak WH, Mackness B, Mackness MI, Jakubowski H (2006) The correlation of homocysteine-thiolactonase activity of the paraoxonase (PON1) protein with coronary heart disease status. Cell Mol Biol (Noisy-le-grand) 52:4–10

    Google Scholar 

  • Herrmann W, Obeid R (2011) Homocysteine: a biomarker in neurodegenerative diseases. Clin Chem Lab Med 49:435–441

    CAS  PubMed  Google Scholar 

  • Jakubowski H (2004) Molecular basis of homocysteine toxicity in humans. Cell Mol Life Sci 61:470–487

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H (2011) Quality control in tRNA charging: editing of homocysteine. Acta Biochim Pol 58:149–163

    CAS  PubMed  Google Scholar 

  • Kalani A, Kamat PK, Tyagi SC, Tyagi N (2013) Synergy of homocysteine, microRNA, and epigenetics: a novel therapeutic approach for stroke. Mol Neurobiol 48:157–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalani A, Kamat PK, Familtseva A, Chaturvedi P, Muradashvili N, Narayanan N, Tyagi SC, Tyagi N (2014) Role of microRNA29b in blood–brain barrier dysfunction during hyperhomocysteinemia: an epigenetic mechanism. J Cereb Blood Flow Metabol. doi:10.1038/jcbfm.2014.74

    Google Scholar 

  • Kawada H, Nishiyama C, Takagi A, Tokura T, Nakano N, Maeda K, Mayuzumi N, Ikeda S, Okumura K, Ogawa H (2005) Transcriptional regulation of ATP2C1 gene by Sp1 and YY1 and reduced function of its promoter in Hailey–Hailey disease keratinocytes. J Invest Dermatol 124:1206–1214

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Lee BH, Kim YM, Kim GH, Yoo HW (2013) Congenital MTHFR deficiency causing early-onset cerebral stroke in a case homozygous for MTHFR thermolabile variant. Metab Brain Dis 28:519–522

    Article  PubMed  Google Scholar 

  • Kolling J, Scherer EB, da Cunha AA, da Cunha MJ, Wyse AT (2011) Homocysteine induces oxidative-nitrative stress in heart of rats: prevention by folic acid. Cardiovasc Toxicol 11:67–73

    Article  CAS  PubMed  Google Scholar 

  • Kovalska M, Kovalska L, Pavlikova M, Janickova M, Mikuskova K, Adamkov M, Kaplan P, Tatarkova Z, Lehotsky J (2012) Intracellular signaling MAPK pathway after cerebral ischemia-reperfusion injury. Neurochem Res 37:1568–1577

    Article  CAS  PubMed  Google Scholar 

  • Kwon HM, Lee YS, Bae HJ, Kang DW (2014) Homocysteine as a predictor of early neurological deterioration in acute ischemic stroke. Stroke 45:871–873

    Article  CAS  PubMed  Google Scholar 

  • Lehotsky J, Burda J, Danielisová V, Gottlieb M, Kaplán P et al (2009a) Ischemic tolerance: the mechanisms of neuroprotective strategy. Anat Rec 292:2002–2012

    Article  Google Scholar 

  • Lehotsky J, Urban P, Pavlíková M, Tatarková Z, Kaminska B, Kaplán P (2009b) Molecular mechanisms leading to neuroprotection/ischemic tolerance: effect of preconditioning on the stress reaction of endoplasmic reticulum. Cell Mol Neurobiol 29:917–925

    Article  CAS  PubMed  Google Scholar 

  • Lehotsky J., Kovalská M., Drgová A., Kaplán P., Tatarková Z. Petráš M. (2014) Protective mechanisms induced by ischemic preconditioning in hyperhomocysteinemic rats. 8th international symposium on neuroprotection neurorepair 2014, Magdeburg, Germany

  • Lehotský J, Pavlíková M, Kovalska M, Kaplan P, Tatarková Z, Racay P (2011) Hyperhomocysteinemai and ischemic preconditioning in rat brain: response of SPCA Ca2+ ATPase gene expression. J Neurochem 118(Suppl. 1):154

    Google Scholar 

  • Li P, Qin C (2014) Methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms and susceptibility to ischemic stroke: a meta-analysis. Gene 535:359–364

    Article  CAS  PubMed  Google Scholar 

  • Li MH, Tang JP, Zhang P, Li X, Wang CY, Wei HJ, Yang XF, Zou W, Tang XQ (2014) Disturbance of endogenous hydrogen sulfide generation and endoplasmic reticulum stress in hippocampus are involved in homocysteine-induced defect in learning and memory of rats. Behav Brain Res 262:35–41

    Article  CAS  PubMed  Google Scholar 

  • Marković AR, Hrnčić D, Macut D, Stanojlović O, Djuric D (2011) Anticonvulsive effect of folic acid in homocysteine thiolactone-induced seizures. Cell Mol Neurobiol 31:1221–1228

    Article  PubMed  Google Scholar 

  • Medina M, Urdiales JL, Amores-Sánchez MI (2001) Roles of homocysteine in cell metabolism. Eur J Biochem 268:3871–3882

    Article  CAS  PubMed  Google Scholar 

  • Murín R., Škovierová H., Mahmood S., Blahovcová E., Lehotský J. (2014) Homocysteine affects the survival of cultured human glial cells. 8th international symposium on neuroprotection neurorepair 2014, Magdeburg, Germany

  • Obeid R, Hermann W (2006) Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett 580:2994–3005

    Article  CAS  PubMed  Google Scholar 

  • Pavlikova M, Kovalska M, Tatarkova Z, Sivonova-Kmetova M, Kaplan P, Lehotsky J (2011) Response of secretory pathways Ca2+ ATPase gene expression to hyperhomocysteinemia and/or ischemic preconditioning in rat cerebral cortex and hippocampus. Gen Physiol Biophys 30:61–69

    Article  Google Scholar 

  • Pavlíková M, Tatarková Z, Sivoňová M, Kaplán P, Križanová O, Lehotský J (2009) Alterations induced by ischemic preconditioning on secretory pathways Ca2+-ATPase (SPCA) gene expression and oxidative damage after global cerebral ischemia/reperfusion in rats. Cell Mol Neurobiol 29:909–916

    Article  PubMed  Google Scholar 

  • Petras M, Tatarkova Z, Kovalska M, Mokra D, Dobrota D, Lehotsky J, Drgova A (2014) Hyperhomocysteinemia as a risk factor for the neuronal system disorders. J Physiol Pharmacol 65:15–23

    CAS  PubMed  Google Scholar 

  • Postea O, Krotz F, Henger A, Keller C, Weiss N (2006) Stereospecific and redox-sensitive increase in monocyte adhesion to endothelial cells by homocysteine. Arterioscler Thromb Vasc Biol 26:508–513

    Article  CAS  PubMed  Google Scholar 

  • Refsum H, Ueland PM, Nygard O, Vollset SE (1998) Homocysteine and cardiovascular disease. Annu Rev Med 49:31–62

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Hariyama H, Moriguchi K (1998) S-adenosyl-l-methionine protects the hippocampal CA1 neurons from the ischemic neuronal death in rat. Biochem Biophys Res Commun 150:491–496

    Article  Google Scholar 

  • Sepulveda MR, Marcos D, Berrocal M, Raeymaekers L, Mata AM, Wuytack F (2008) Activity and localization of the secretory pathway Ca2+ ATPase isoform 1 (SPCA1) in different areas of the mouse brain during postnatal development. Mol Cell Neurosci 38:461–473

    Article  CAS  PubMed  Google Scholar 

  • Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483

    Article  CAS  PubMed  Google Scholar 

  • Smulders YM, Smith DE, Kok RM, Teerlink T, Swinkels DW, Stehouwer CD, Jakobs C (2006) Cellular folate vitamer distribution during and after correction of vitamin B12 deficiency: a case for the methylfolate trap. Br J Haematol 132:623–629

    Article  CAS  PubMed  Google Scholar 

  • Steele ML, Fuller S, Maczurek AE, Kersaitis C, Ooi L, Münch G (2013) Chronic inflammation alters production and release of glutathione and related thiols in human U373 astroglial cells. Cell Mol Neurobiol 33:19–30

    Article  CAS  PubMed  Google Scholar 

  • Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, Jing Z, Chen J, Zigmond MJ, Gao Y (2014) Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol 114:58–83

    Article  PubMed  Google Scholar 

  • Thompson JW, Dave KR, Young JI, Perez-Pinzon MA (2013) Ischemic preconditioning alters the epigenetic profile of the brain from ischemic intolerance to ischemic tolerance. Neurotherapeutics 10:789–797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Urban P, Pavlíková M, Sivonová M, Kaplán P, Tatarková Z, Kaminska B, Lehotský J (2009) Molecular analysis of endoplasmic reticulum stress response after global forebrain ischemia/reperfusion in rats: effect of neuroprotective simvastatin. Cell Mol Neurobiol 29:181–192

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky A, Toescu EC (2006) Neuronal–glial networks as substrate for CNS integration. J Cell Mol Med 10:826–836

    Article  CAS  PubMed  Google Scholar 

  • Williams SR, Yang Q, Chen F, Liu X, Keene KL, Jacques P, Chen WM, Weinstein G, Hsu FC, Beiser A, Wang L, Bookman E, Doheny KF, Wolf PA, Zilka M, Selhub J, Nelson S, Gogarten SM, Worrall BB, Seshadri S, Sale MM (2014) Genomics and Randomized Trials Network; Framingham Heart Study. Genome-wide meta-analysis of homocysteine and methionine metabolism identifies five one carbon metabolism loci and a novel association of ALDH1L1 with ischemic stroke. PLoS Genet 10:e1004214

    Article  PubMed Central  PubMed  Google Scholar 

  • Ziemińska E, Stafiej A, Łazarewicz JW (2003) Role of group I metabotropic glutamate receptors and NMDA receptors in homocysteine-evoked acute neurodegeneration of cultured cerebellar granule neurons. Neurochem Int 43:481–492

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project is financed by Grants VEGA 1/0213/12, from the Ministry of Education of the Slovak Republic and by the project “Identification of Novel Markers in Diagnostic Panel of Neurological Diseases”, code:26220220114 co-financed from EC sources and European Regional Development Fund and project of MZ SR No. 2012/30-UKMA-7.

Conflict of interest

The authors: Jan Lehotsky, Martin Petras, Barbara Tothova, Anna Drgova and Peter Kaplan have no financial or nonfinancial conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Lehotsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehotsky, J., Petras, M., Kovalska, M. et al. Mechanisms Involved in the Ischemic Tolerance in Brain: Effect of the Homocysteine. Cell Mol Neurobiol 35, 7–15 (2015). https://doi.org/10.1007/s10571-014-0112-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0112-3

Keywords

Navigation