Advertisement

Cellular and Molecular Neurobiology

, Volume 34, Issue 7, pp 999–1010 | Cite as

Immunoregulation Effects of Bone Marrow-Derived Mesenchymal Stem Cells in Xenogeneic Acellular Nerve Grafts Transplant

  • Lihong Fan
  • Zefeng Yu
  • Jia Li
  • Xiaoqian Dang
  • Kunzheng Wang
Original Research

Abstract

This study evaluated whether bone marrow-derived mesenchymal stem cells (BM-MSCs) combined with xenogeneic acellular nerve grafts (xANGs) would reduce the inflammation reaction of xANGs transplantation. BM-MSCs were extracted, separated, purified, and cultured from the bone marrow of rats. Then BM-MSCs were seeded into 5 mm xANGs as experimental group, while xANGs group was chosen as control. Subcutaneous implantation and nerve grafts transplantation were done in this study. Walking-track tests, electrophysiological tests, H&E staining, and immunostaining of CD4, CD8, and CD68 of subcutaneous implantations, cytokine concentrations of IL-2, IL-10, IFN-γ and TNF-α in lymphocytes supernatants and serum of the two groups were evaluated. Walking-track tests and electrophysiological tests suggested the group of BM-MSCs with xANGs obtained better results than xANGs group (P < 0.05). H&E staining and immunostaining of CD4, CD8, and CD68 of subcutaneous implantations showed there were less inflammatory cells in the group of BM-MSCs when compared with the xANGs group. The cytokine concentrations of IL-2, IFN-γ, and TNF-α in BM-MSCs group were lower than xANGs group in lymphocytes supernatants and serum (P < 0.05). However, IL-10 concentrations in BM-MSCs group were higher than xANGs group (P < 0.05). xANG with BM-MSCs showed better nerve repair function when compared with xANG group. Furthermore, xANG with BM-MSCs showed less inflammatory reaction which might indicate the reason of its better nerve regeneration.

Keywords

Immunoregulation Xenogeneic acellular nerve graft Bone marrow-derived mesenchymal stem cells Transplant 

Notes

Acknowledgments

We would like to thank the National Natural Science Foundation of China (Grant Nos. 81101363 and 81371944) for financially supporting this study.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822PubMedCrossRefGoogle Scholar
  2. Allman AJ, McPherson TB, Badylak SF, Merrill LC, Kallakury B, Sheehan C, Raeder RH, Metzger DW (2001) Xenogeneic extracellular matrix grafts elicit a Th2-restricted immune response. Transplantation 71(11):1631–1640PubMedCrossRefGoogle Scholar
  3. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20(2):86–100PubMedPubMedCentralCrossRefGoogle Scholar
  4. Badylak SF, Freytes DO, Gilbert TW (2009) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 5(1):1–13PubMedCrossRefGoogle Scholar
  5. Baptista AF, de Souza Gomes JR, Oliveira JT, Garzedim Santos SM, Vannier-Santos MA, Blanco Martinez AM (2007) A new approach to assess function after sciatic nerve lesion in the mouse—adaptation of the sciatic static index. J Neurosci Methods 161(2):259–264PubMedCrossRefGoogle Scholar
  6. Bayrak A, Tyralla M, Ladhoff J, Schleicher M, Stock UA, Volk H-D, Seifert M (2010) Human immune responses to porcine xenogeneic matrices and their extracellular matrix constituents in vitro. Biomaterials 31(14):3793–3803PubMedCrossRefGoogle Scholar
  7. Bozkurt A, Tholl S, Wehner S, Tank J, Cortese M, Dm O’Dey, Deumens R, Lassner F, Schuegner F, Groeger A, Smeets R, Brook G, Pallua N (2008) Evaluation of functional nerve recovery with Visual-SSI—A novel computerized approach for the assessment of the static sciatic index (SSI). J Neurosci Methods 170(1):117–122PubMedCrossRefGoogle Scholar
  8. Briesemeister D, Sommermeyer D, Loddenkemper C, Loew R, Uckert W, Blankenstein T, Kammertoens T (2011) Tumor rejection by local interferon gamma induction in established tumors is associated with blood vessel destruction and necrosis. Int J Cancer 128(2):371–378PubMedCrossRefGoogle Scholar
  9. Cantrell DA, Smith KA (1984) The interleukin-2 T-cell system—a new cell-growth model. Science 224(4655):1312–1316PubMedCrossRefGoogle Scholar
  10. Chen X, Armstrong MA, Li G (2006) Mesenchymal stem cells in immunoregulation. Immunol Cell Biol 84(5):413–421PubMedCrossRefGoogle Scholar
  11. Chen C-J, Ou Y-C, Liao S-L, Chen W-Y, Chen S-Y, Wu C-W, Wang C-C, Wang W-Y, Huang Y-S, Hsu S-H (2007) Transplantation of bone marrow stromal cells for peripheral nerve repair. Exp Neurol 204(1):443–453PubMedCrossRefGoogle Scholar
  12. Chernoff AE, Granowitz EV, Shapiro L, Vannier E, Lonnemann G, Angel JB, Kennedy JS, Rabson AR, Wolff SM, Dinarello CA (1995) A randomized, controlled trial of IL-10 in humans—inhibition of inflammatory cytokine production and immune-responses. J Immunol 154(10):5492–5499PubMedGoogle Scholar
  13. Dazzi F, Krampera M (2011) Mesenchymal stem cells and autoimmune diseases. Best Pract Res Clin Haematol 24(1):49–57PubMedCrossRefGoogle Scholar
  14. de Menezes Neves PDM, Machado JR, dos Reis MA, Faleiros ACG, de Lima Pereira SA, Rodrigues DBR (2013) Distinct expression of interleukin 17, tumor necrosis factor alpha, transforming growth factor beta, and forkhead box P3 in acute rejection after kidney transplantation. Ann Diagn Pathol 17(1):75–79PubMedCrossRefGoogle Scholar
  15. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843PubMedCrossRefGoogle Scholar
  16. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317PubMedCrossRefGoogle Scholar
  17. English K, Barry FP, Field-Corbett CP, Mahon BP (2007) IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol Lett 110(2):91–100PubMedCrossRefGoogle Scholar
  18. Friedens AJ, Deriglas UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luria EA, Rudakow IA (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by invitro colony assay method. Exp Hematol 2(2):83–92Google Scholar
  19. Glennie S, Soeiro I, Dyson PJ, Lam EWF, Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105(7):2821–2827PubMedCrossRefGoogle Scholar
  20. He B, Zhu QT, Chai YM, Ding XH, Tang JY, Gu LQ, Xiang JP, Yang YX, Zhu JK, Liu XL (2012) Outcomes with the use of human acellular nerve graft for repair of digital nerve defects: a prospective, multicenter, controlled clinical trial. J Tissue Eng Reg Med 6:76Google Scholar
  21. Hu J, Zhu Q-T, Liu X-L, Y-b Xu, Zhu J-K (2007) Repair of extended peripheral nerve lesions in rhesus monkeys using acellular allogenic nerve grafts implanted with autologous mesenchymal stem cells. Exp Neurol 204(2):658–666PubMedCrossRefGoogle Scholar
  22. Hudson TW, Liu SY, Schmidt CE (2004) Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng 10(9–10):1346–1358PubMedCrossRefGoogle Scholar
  23. Jesuraj NJ, Santosa KB, Newton P, Liu Z, Hunter DA, Mackinnon SE, Sakiyama-Elbert SE, Johnson PJ (2011) A systematic evaluation of Schwann cell injection into acellular cold-preserved nerve grafts. J Neurosci Methods 197(2):209–215PubMedPubMedCentralCrossRefGoogle Scholar
  24. Kanaya F, Firrell JC, Breidenbach WC (1996) Sciatic function index, nerve conduction tests, muscle contraction, and axon morphometry as indicators of regeneration. Plast Reconstr Surg 98(7):1264–1271PubMedCrossRefGoogle Scholar
  25. Kang JW, Kang K-S, Koo HC, Park JR, Choi EW, Park YH (2008) Soluble factors-mediated immunomodulatory effects of canine adipose tissue-derived mesenchymal stem cells. Stem Cells Dev 17(4):681–693PubMedCrossRefGoogle Scholar
  26. Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37(12):1445–1453PubMedPubMedCentralCrossRefGoogle Scholar
  27. Krampera M (2011) Mesenchymal stromal cells: more than inhibitory cells. Leukemia 25(4):565–566PubMedCrossRefGoogle Scholar
  28. Kubek T, Ghalib N, Dubovy P (2011) Endoneurial extracellular matrix influences regeneration and maturation of motor nerve axons—a model of acellular nerve graft. Neurosci Lett 496(2):75–79PubMedCrossRefGoogle Scholar
  29. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57(1):11–20PubMedCrossRefGoogle Scholar
  30. Luz-Crawford P, Kurte M, Bravo-Alegria J, Contreras R, Nova-Lamperti E, Tejedor G, Noel D, Jorgensen C, Figueroa F, Djouad F, Carrion F (2013) Mesenchymal stem cells generate a CD4(+) CD25(+) Foxp3(+) regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res Ther 4:65PubMedPubMedCentralCrossRefGoogle Scholar
  31. Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y (2014) Immunobiology of mesenchymal stem cells. Cell Death Differ 21(2):216–225PubMedPubMedCentralCrossRefGoogle Scholar
  32. Mandegary A, Azmandian J, Soleymani S, Pootari M, Habibzadeh S-D, Ebadzadeh M-R, Dehghani-Firouzabadi M-H (2013) Effect of donor tumor necrosis factor-alpha and interleukin-10 genotypes on delayed graft function and acute rejection in kidney transplantation. Iran J Kidney Dis 7(2):135–141PubMedGoogle Scholar
  33. Mimura T, Dezawa M, Kanno H, Sawada H, Yamamoto I (2004) Peripheral nerve regeneration by transplantation of bone marrow stromal cell-derived Schwann cells in adult rats. J Neurosurg 101(5):806–812PubMedCrossRefGoogle Scholar
  34. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Ann Rev Immunol 19:683–765CrossRefGoogle Scholar
  35. Nadri S, Soleimani M, Hosseni RH, Massumi M, Atashi A, Izadpanah R (2007) An efficient method for isolation of murine bone marrow mesenchymal stem cells. Int J Dev Biol 51(8):723–729PubMedCrossRefGoogle Scholar
  36. Nagao RJ, Lundy S, Khaing ZZ, Schmidt CE (2011) Functional characterization of optimized acellular peripheral nerve graft in a rat sciatic nerve injury model. Neurol Res 33(6):600–608PubMedCrossRefGoogle Scholar
  37. Nagler A, Berger R, Ackerstein A, Czyz JA, Luis Diez-Martin J, Naparstek E, Or R, Gan S, Shimoni A, Slavin S (2010) A randomized controlled multicenter study comparing recombinant interleukin 2 (rIL-2) in conjunction with recombinant interferon alpha (IFN-alpha) versus no immunotherapy for patients with malignant lymphoma postautologous stem cell transplantation. J Immunother 33(3):326–333PubMedCrossRefGoogle Scholar
  38. Navarro X, Vivo M, Valero-Cabre A (2007) Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 82(4):163–201PubMedCrossRefGoogle Scholar
  39. Noble J, Munro CA, Prasad V, Midha R (1998) Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma 45(1):116–122PubMedCrossRefGoogle Scholar
  40. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147PubMedCrossRefGoogle Scholar
  41. Polchert D, Sobinsky J, Douglas GW, Kidd M, Moadsiri A, Reina E, Genrich K, Mehrotra S, Setty S, Smith B, Bartholomew A (2008) IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol 38(6):1745–1755PubMedPubMedCentralCrossRefGoogle Scholar
  42. Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB (2010) Pro-inflammatory cytokines, IFN gamma and TNF alpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. Plos One 5(2):e9016PubMedPubMedCentralCrossRefGoogle Scholar
  43. Pulford KAF, Sipos A, Cordell JL, Stross WP, Mason DY (1990) Distribution of the CD68 macrophage myeloid associated antigen. Int Immunol 2(10):973–980PubMedCrossRefGoogle Scholar
  44. Rendina M, Castellaneta NM, Fagiuoli S, Ponziani FR, Vigano R, Iemmolo RM, Donato MF, Toniutto P, Pasulo L, Morelli MC, Burra P, Miglioresi L, Giannelli V, Di Paolo D, Di Leo A (2011) Acute and chronic rejection during interferon therapy in HCV recurrent liver transplant patients: results from the AISF-RECOLT-C group. Digest Liver Dis 43:S148–S149Google Scholar
  45. Rosberg HE, Carlsson KS, Dahlin LB (2005) Prospective study of patients with injuries to the hand and forearm: costs, function, and general health. Scand J Plast Reconstr Surg Hand Surg 39(6):360–369PubMedCrossRefGoogle Scholar
  46. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunological self-tolerance maintained by activated t-cells expressing il-2 receptor alpha-chains (CD25)—breakdown of a single mechanism of self-tolerance causes various autoimmune-diseases. J Immunol 155(3):1151–1164PubMedGoogle Scholar
  47. Sandor M, Xu H, Connor J, Lombardi J, Harper JR, Silverman RP, McQuillan DJ (2008) Host response to implanted porcine-derived biologic materials in a primate model of abdominal wall repair. Tissue Eng Part A 14(12):2021–2031PubMedCrossRefGoogle Scholar
  48. Wang J, Al-Lamki RS (2013) Tumor necrosis factor receptor 2: its contribution to acute cellular rejection and clear cell renal carcinoma. Biomed Res Int 2013:821310PubMedPubMedCentralGoogle Scholar
  49. Wang D, Liu X-L, Zhu J-K, Jiang L, Hu J, Zhang Y, Yang L-M, Wang H-G, Yi J-H (2008) Bridging small-gap peripheral nerve defects using acellular nerve allograft implanted with autologous bone marrow stromal cells in primates. Brain Res 1188:44–53PubMedCrossRefGoogle Scholar
  50. Xu H, Wan H, Sandor M, Qi S, Ervin F, Harper JR, Silverman RP, McQuillan DJ (2008) Host response to human acellular dermal matrix transplantation in a primate model of abdominal wall repair. Tissue Eng Part A 14(12):2009–2019PubMedCrossRefGoogle Scholar
  51. Zhang Y, Luo H, Zhang Z, Lu Y, Huang X, Yang L, Xu J, Yang W, Fan X, Du B, Gao P, Hu G, Jin Y (2010) A nerve graft constructed with xenogeneic acellular nerve matrix and autologous adipose-derived mesenchymal stem cells. Biomaterials 31(20):5312–5324PubMedCrossRefGoogle Scholar
  52. Zibar L, Wagner J, Pavlinic D, Galic J, Pasini J, Juras K, Barbic J (2011) The relationship between interferon-gamma gene polymorphism and acute kidney allograft rejection. Scand J Immunol 73(4):319–324PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Lihong Fan
    • 1
  • Zefeng Yu
    • 1
  • Jia Li
    • 1
  • Xiaoqian Dang
    • 1
  • Kunzheng Wang
    • 1
  1. 1.The First Department of OrthopedicsThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina

Personalised recommendations