Skip to main content

Advertisement

Log in

Parallels Between Major Depressive Disorder and Alzheimer’s Disease: Role of Oxidative Stress and Genetic Vulnerability

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The thesis of this review is that oxidative stress is the central factor in major depressive disorder (MDD) and Alzheimer’s disease (AD). The major elements involved are inflammatory cytokines, the hypothalamic–pituitary axis, the hypothalamic–pituitary gonadal, and arginine vasopressin systems, which induce glucocorticoid and “oxidopamatergic” cascades when triggered by psychosocial stress, severe life-threatening events, and mental-affective and somatic diseases. In individuals with a genomic vulnerability to depression, these cascades may result in chronic depression–anxiety–stress spectra, resulting in MDD and other known depressive syndromes. In contrast, in subjects with genomic vulnerability to AD, oxidative stress-induced brain damage triggers specific antioxidant defenses, i.e., increased levels of amyloid-β (Aβ) and aggregation of hyper-phosphorylated tau, resulting in paired helical filaments and impaired functions related to the ApoEε4 isoform, leading to complex pathological cascades culminating in AD. Surprisingly, all the AD-associated molecular pathways mentioned in this review have been shown to be similar or analogous to those found in depression, including structural damage, i.e., hippocampal and frontal cortex atrophy. Other interacting molecular signals, i.e., GSK-3β, convergent survival factors (brain-derived neurotrophic factor and heat shock proteins), and transition redox metals are also mentioned to emphasize the vast array of intermediates that could interact via comparable mechanisms in both MDD and AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

Aβ:

Amyloid-β

ACTH:

Adrenal corticotrophic hormone

AGE:

Advanced glycation end product

ApoEε4:

Apolipoprotein Eε4

AβPP:

Amyloid β protein precursor

BDNF:

Brain-derived neurotrophic factor

CSF:

Cerebral spinal fluid

DNA:

Deoxyribonucleic acid

GSK-3β:

Glycogen synthase kinase-β

GRH:

Gonadotropin-releasing hormone

G-Px:

Glutathione peroxidase

4-HNE:

4-hydroxy-nonenal

HSP:

Heat shock protein

5-HTT:

Serotonin transporter

IL-1β:

Interleucine-1β

IFN-γ:

Interferon-γ

IL-1:

Interleukin-1

IL-6R:

Interleukin-6 receptor

JAK:

Janus kinase

JNK 1–3:

Jun NH2 kinases 1–3

MAPK:

Mitogen-activated protein kinase

MCI:

Mild cognitive impairment

MDD:

Major depressive disorder

NGF:

Nerve growth factor

NFT:

Neurofibrillary tangle

NMDA:

N-Methyl-dextro-aspartate

NMDAR:

NMDA receptor

NO:

Nitric oxide

NSAID:

Non-steroidal anti-inflammatory drugs

NSD:

Not senile dementia

PET:

Positron emission tomography

PKC:

Protein kinase C

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SDAT:

Senile dementia of Alzheimer type

SP:

Senile plaque

Tau:

Tau protein

TNF-ɑ:

Tumor necrosis factor-ɑ

TRK-β:

Tyrosine-receptor kinase-β

References

  • Akiskal HS, Lewis LJ (2005) The depressive spectrum: re-conceptualizing the relationship between dysthymic, sub-threshold and major depressions. In: Licinio J, Wong M-L (eds.) Biology of depression: from novel insights to therapeutic strategies. Wiley-VCH Verlag GmbH & Co., Weinheim GmbH & Co., Weinheim, pp 47–70

  • Akiskal HS, McKinney WTJ (1973) Depressive disorders: toward a unified hypothesis. Science 182:20–29

    PubMed  CAS  Google Scholar 

  • Alexopoulos G, Young R, Meyers B (1993) Geriatric depression: age of onset and dementia. Biol Psychiatry 1934:141–145

    Google Scholar 

  • Allagy MS, Nciri R, Rouhayd MF, Mourat GC, El Feki A, Croute D, Vincent C (2009) Long term exposure to low lithium concentrations stimulates proliferation, modifies stress protein expression pattern and enhances resistance to oxidative stress in SH-SY5Y cells. Neurochem Res 34:453–462

    Google Scholar 

  • Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB (1999) The role of corticotrophin-releasing factor in depression and anxiety disorders. J Endocrinol 160:1–12

    PubMed  CAS  Google Scholar 

  • Atwood CS, Meethal SV, Liu T, Wilson AC, Gallego M, Smith MA, Bowen RL (2005) Dysregulation of the hypothalamic-pituitary-gonadal axis wit menopause and andropause promotes neurodegenerative senescence. J Neuropathol Exp Neurol 64:93–103

    PubMed  CAS  Google Scholar 

  • Author-Kokmen E, Beard CM, Chandra V, Offord KP, Schoenberg BS, Ballard DJ (1991) Clinical risk factors for Alzheimer’s disease: a population-based case-control study. Neurology 41:1393–1397

    Google Scholar 

  • Avshalumov MV, Rice ME (2003) Activation of ATP-sensitive K+ c(KATP) channels by H2O2 underlies glutamate-dependent inhibition of striatal dopamine release. Proc Natl Acad Sci USA 100:11729–11734

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ballmaier M, Narr KL, Toga AW, Elderkin-Thompson V, Thompson PM, Hamilton L, Ebrahim H, Pham D, Heinz A, Kumar A (2008) Hippocampal morphology and distinguishing late-onset from early-onset elderly depression. Am J Psychiatry 165:229–237

    PubMed  PubMed Central  Google Scholar 

  • Bao AM, Swaab DF (2007) Gender difference in age-related number of corticotrophin–releasing hormone-expressing neurons in the human hypothalamic paraventricular nucleus and the role of sex hormones. Neuroendocrinology 95:27–36

    Google Scholar 

  • Bao AM, Fischer DF, Wu Y-H, Hol EM, Balsear R, Unmehopa UA, Zhou JN, Swaab DF (2006) A direct androgenic involvement in the expression of human corticotrophin releasing hormone. Mol Psychiatry 11:567–576

    PubMed  CAS  Google Scholar 

  • Bao A-M, Meynen G, Swaab DF (2008) The stress system in depression and neurodegeneration: focus on the hypothalamus. Brain Res Rev 57:531–553

    PubMed  CAS  Google Scholar 

  • Baumann MH, Rothman RB (2008) Neurobiology of 3-4-Methylenedioxy-methamphetamine MDMA, or “Ecstasy”. In: Karch SB (ed) Neurochemistry of Abused Drugs. CRC Press Taylor & Francis Group, Boca Raton, pp 119–142

    Google Scholar 

  • Baumann B, Danos P, Krell D, Diekmann S, Leschinger A, SStauch R et al (1999) Reduced volume of limbic system-affiliated basal ganglia in mood disorders: preliminary data from a post mortem study. J Neuropsychiatry Clin Neurosci 11:18071–18078

    Google Scholar 

  • Behl C, Lezoualch F, Trapp T, Widmann Skutella T, Holsboer F (1997) Glucocorticoids enhance oxidative stress-induced cell death in hippocampal neurons in vitro. Endocrinology 13891:101–105

    Google Scholar 

  • Benes FM, Kwok EW, Vincent SL, Todtenkopf MS (1998) A reduction of not-pyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiatry 44:88–97

    PubMed  CAS  Google Scholar 

  • Berman RM, Capiello A, Anand A, Oren DA, Henninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    PubMed  CAS  Google Scholar 

  • Bhat RV, Budd Haeberlein SL, Avila J (2004) Glycogen synthase kinase-3: a drug target for CNS therapies. J Neurochem 89:1313–1317

    PubMed  CAS  Google Scholar 

  • Bilici M, Efe H, Koroglu MA, Uydu HA, Bekaroglu M, Deger O (2001) Anti-oxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affect Disord 64:43–51

    PubMed  CAS  Google Scholar 

  • Bindoli A, Rigobello MP, Deeble DJ (1992) Biochemical and toxicological properties of the oxidation products of catecholamines. Free Radic Biol Med 13:391–405

    PubMed  CAS  Google Scholar 

  • Bitran D, Shiekh M, Dowd A, Dugan MM, Renda P (1998) Corticosterone is permissive to the anxiolytic effect that results from the blockade of hippocampal mineralocorticoid receptors. Pharmacol Biochem Behav 60:879–887

    PubMed  CAS  Google Scholar 

  • Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Müller F-J, Loring JF, Yamasaki TR, Poon WW, Green KN, LaFerla LM (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci USA 106:13594–13599

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bregola et al (2000) Different patterns of induction of fibroblast growth factor-2 and brain-derived neurotrophic factor messenger RNAs during kindling epileptogenesis and development of a herpes simplex vector for fibroblast growth factor-2 gene transfer in vivo. Epilepsia 419:s122–s126

    Google Scholar 

  • Bremner DJ (1999) Does stress damage the brain? Biol Psychiatry 45:797–805

    PubMed  CAS  Google Scholar 

  • Brown GW, Harris TO, Hepworthy C (1994) Life events and endogenous depression: a puzzle re-examined. Arch Gen Psychiatry 51:525–534

    PubMed  CAS  Google Scholar 

  • Caccamo A, Maldonado MA, Bokov AF, Majumder S, Oddo S (2010) CBP (CREB binding protein) gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 107:22687–22692

    PubMed  CAS  PubMed Central  Google Scholar 

  • Caine ED (1981) “Pseudo-dementia”: current concepts and future directions. Arch Gen Psychiatry 38:1359–1364

    PubMed  CAS  Google Scholar 

  • Cairo G, Recalcati S, Pietrangelo A, Minotti G (2002) The Iron regulatory proteins: targets and modulators of free radical reactions and oxidative damage. Free Radic Biol Med 32:1237–1243

    PubMed  CAS  Google Scholar 

  • Calabrese B, Scapagnini G, Colombrita C, Ravagna A, Pennisi G, Giuffrida Stella AM, Galli F, Butterfield DA (2003) Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress: a nutritional approach. Amino Acids 25:437–447

    PubMed  CAS  Google Scholar 

  • Calabrese B, Mancuso C, Marco De, Giuffrida S, Butterfield DA (2007a) Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders. In: Qureshi GA, Parvez SH (eds) Oxidative stress and neurodegenerative disorders. Elsevier, Amsterdam, pp 115–134

    Google Scholar 

  • Calabrese V, Guagliano E, Sapienza M, Panebianco M, Calafao S, Puleo E, Pennisi G, Mancuso C, Butterfield DA, Stella AG (2007b) Redox regulation of cellular stress responses in aging and neurodegenerative disorders: role of vita-genes. Neurochem Res 32:757–773

    PubMed  CAS  Google Scholar 

  • Calapai G, Crupi A, Firenzuoli F et al (2001) Interleukin-6 involvement in antidepressant action of Hypericum Perforatum. Pharmacopsychiatry 34((Supp 1)):S8–S10

    PubMed  CAS  Google Scholar 

  • Canli T, Omura K, Haas BW, Fallgatter A, Constable RT, Lesch KP (2005) Beyond affect: a role for genetic variation of the serotonin transporter in neural activation during a cognitive attention task. Proc Natl Acad Sci USA 102:12224–12229

    PubMed  CAS  PubMed Central  Google Scholar 

  • Carneiro AMD, Airey DC, Thompson BA, Zhu C-B, Lu L, Erikson KM, Blakely RD (2009) Functional coding variation in recombinant inbred mouse lines reveals multiple seroronin transporter-associated phenotypes. Proc Natl Acad Sci USA 106:2047–2052

    PubMed  CAS  PubMed Central  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, McClay J, Harrington H, Mill J, Martin J, Braithwaite A, Pouton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389

    PubMed  CAS  Google Scholar 

  • Catena-Dell’Osso M, Bellantuono C, Consoli G, BaroniS Rotella F, Marazziti D (2011) Inflammatory and neurodegenerative pathways in depression: a new avenue for antidepressant development? Curr Med Chem 18:245–255

    PubMed  Google Scholar 

  • Chalmers DT, Desar D, Graham DI, Brooks DN, McCulloch J (1990) Differential alterations of cortical glutamatergic binding sites in senile dementia of the Alzheimer type. Proc Natl Acad Sci USA 87:1352–1356

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen G, Zeng WZ, Jiang L, Yuan PX, Zhao J, Mangi HK (1999) The mood-stabilizing agents lithium and valproate robustly increase the expression of the neuroprotective protein Bcl-2 in the CNS. J Neurochem 72:879–882

    PubMed  CAS  Google Scholar 

  • Chen KH, Reese EA, Kim H-W, Rapoport SI, Rao JS (2011) Disturbed neurotransmitter transporter expression in Alzheimer’s disease brain. J Alzheimers Dis 26:755–766

    PubMed  CAS  PubMed Central  Google Scholar 

  • Coppedè F, Migliore L (2007) Genetic and environmental factors in neurodegenerative diseases. In: Qureshi GA, Parvez SH (eds) Oxidative stress and neurodegenerative disorders. Elsevier, Amsterdam, pp 89–114

    Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    PubMed  CAS  Google Scholar 

  • Czéh B, Michaelis T, Watanabe T, Frahm J, Biurrun G, van Kampen M, Gartolomucci A, Fuchs E (2001) Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci USA 98:12796–12801

    PubMed  PubMed Central  Google Scholar 

  • Davis JB, Maher P (1994) Protein kinase C activation inhibits glutamate induced cytotoxicity in a neuronal cell lines. Brain Res 652:169–173

    PubMed  CAS  Google Scholar 

  • Davis KL, Davis BM, Greenwald BS, Mohs RC, Mathe AA, Johns CA, Horvath TB (1986) Cortisol and Alzheimer’s disease, I: basal studies. Am J Psychiatry 143:300–305

    PubMed  CAS  Google Scholar 

  • de Haan JB, Crack PJ, Pritchard MA, Kola I (2007) Down syndrome, antioxidant balance and the “gene dosage effect” hypothesis. In: Qureshi GA, Parvez HS (eds) Oxidative stress and neurodegenerative disorders. Elsevier, Amsterdam, pp 219–236

    Google Scholar 

  • De Kloet ER, Reul JMHM (1987) Feedback action and tonic influence of corticosteroids on brain function: a concept arising from the heterogeneity of brain receptor systems. Psychoneuroendocrinology 12:83–105

    PubMed  Google Scholar 

  • De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M (1998) Brain corticosteroid receptor balance in health and disease. Endocrinol Rev 19:269–301

    Google Scholar 

  • de Leon MJ, George AE, Stylopoulos LA, Smith G, Miller DC (1989) Early marker for Alzheimer`s disease: the atrophic hippocampus. Lancet 2:672–673

    PubMed  Google Scholar 

  • de Leon MJ, George AE, Golomb C, Tarshish A, Convit A, Lluger S, De Santi T, Mc Rae SH, Ferris B, Reisberg C, Ince H, Rusinek M, Bobinski B, Quinn B, Miller DC, Wisniewski HM (1997) Frequency of hippocampal formation atrophy in normal aging and Alzheimer’s disease. Neurobiol Aging 18:1–11

    PubMed  Google Scholar 

  • Del Rio J, Frenchilla D (2006) Glutamate and depression. In: Schmidt WJ, Reith MEA (eds) Dopamine and glutamate in psychiatric disorders. Humana Press, Totowa, pp 215–236

    Google Scholar 

  • Devenand DP, Sano M, Tang MX et al (1996) Depressed mood and the incidence of Alzheimer’s disease in the elderly living in the community. Arch Gen Psychiatry 53:175–182

    Google Scholar 

  • Doré S, Takahashi M, Ferris CD, Hester LD, Guastella D, Snyder SH (1999) Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc Natl Acad Sci USA 96:2445–2450

    PubMed  PubMed Central  Google Scholar 

  • Drevets WC (2000) Neuroimaging studies of mood disorders. Biol Psychiatry 48:813–829

    PubMed  CAS  Google Scholar 

  • Du J, Wei Y, Liu L, Wang Y, Khairova R, Blumenthal R, Tragon T, Hunsberger JG, Machado-Vieira R, Drevets W, Wang YT, Manji HK (2010) A kinesin signaling complex mediates the ability of GSK-3β to affect mood-associated behaviors. Proc Natl Acad Sci USA 107:11573–11578

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dunn AJ (2007) Cytokines, stress, and depression. In: Plotnikoff NP, Faith RE, Murgo AJ, Good RA (eds.) Cytokines, stress and immunity. Taylor & Francis Group, Boca Raton, New York, pp 193–214

  • Engelhardt E, Laks J, Cavalcanti JLS (2003) The glutamatergic system and Alzheimer’s disease. Braz Rev Neurol 39:5–21

    Google Scholar 

  • Ereb I, Naziroglu M, Demirdas A (2007) Protective effects of lamotrigine, aripiprazole and escitalopram on depression-induced oxidative stress. Neurochem Res 32:1188–1195

    Google Scholar 

  • Eren I, Nazıroğlu M, Demirdaş A, Çelik Ö, Uğuz Ci A, Altunbaşak A, Özmen I, Uz Efkan (2007) Venlafaxine modulates depression-induced oxidative stress in brain and medulla of rat. Neurochem Res 32:497–505

    PubMed  CAS  Google Scholar 

  • Eriksson PS, Permilieva E, Bjork-Eriksson T et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    PubMed  CAS  Google Scholar 

  • Erkut ZA, Pool G, Swaab DF (1998) Glucocorticoids suppress corticotropin-releasing hormone and vasopressin expression in human hypothalamic neurons. J Clin Endocrinol Metab 83:2066–2073

    PubMed  CAS  Google Scholar 

  • Fiebich BL, Hollig A, Lieb K (2001) Inhibition of substance P-induced cytokine synthesis by St. John’s Wort extracts. Pharmacopsychiatry 34(Suppl 1):S26–S28

    PubMed  CAS  Google Scholar 

  • Fonum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11

    Google Scholar 

  • Gazzaley AH, Weiland NG, McEwen BS, Morrinson JH (1996) Differential regulation of NMDAR-I mRNA and protein by estradiol in the rat hippocampus. J Neurosci 16:6830–6838

    PubMed  CAS  Google Scholar 

  • Geerlings MI, Schoevers RA, Beekman ATF, Jonker C, Deeg DJH, Schmand B, Adèr HJ, Bouter LM, Van Tilburg W (2000) Depression and risk of cognitive decline and Alzheimer’s disease: results of two prospective community-based studies in The Netherlands. Brit J Psychiatry 76:568–5754

  • Geerlings, den Heijer T, Koudstaal PJ, Hofman A, Breteler MMB (2008) History of depression, depressive symptoms, and medial temporal lobe atrophy and the risk of Alzheimer’s disease. Neurology 70:1258–1264

  • Ghosal K, Vogt DL, Liang M, Shen y, Lamb BT, Sanjay WP (2009) Alzheimer’s disease-like pathological features in transgenic mice expressing the APP intracellular domain. Proc Natl Acad Sci USA 106:18367–18372

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gille G, Riederer P (1995) Dopamine and neurodegeneration. In: Schmidt WJ, Reith MEA (eds) Dopamine and glutamate in psychiatric disorders. Humana Press, Totowa, pp 415–445

    Google Scholar 

  • Goodman Y, Bruce AJ, Cheng B, Mattson MP (1996) Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury, and amyloid β-peptide toxicity in hippocampal neurons. J Neurochemi 66:1836–1844

    CAS  Google Scholar 

  • Gorczynski R, Stanley J (1999) Biological activities of cytokines that signal via the JAK/STAT pathway. In: Gorczynski R, Stanley J (eds) Clinical immunology: an introductory text. Landes Bioscience, Jorgetown, pp 117–120

    Google Scholar 

  • Gould E, Tanapat P, McEwen BS, Flugge G, Fuchs E (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci USA 95:3168–3171

    PubMed  CAS  PubMed Central  Google Scholar 

  • Green RCL, Cupples A, Kurz A, Auerbach S, Go R, Sadovnick D, Duara R, Kukull WA, Chui H, Edeki T, Griffith PA, Friedland RP, Bachman D (2003) Depression as a risk factor for Alzheimer disease: the MIRAGE Study. Arch Neurol 60:753–759

    PubMed  Google Scholar 

  • Greene JG, Greenamyre JT (1995) Exacerbation of NMDA, AMPA and l-glutamate excitotoxicity by the succinate dehydrogenase inhibitor malonate. J Neurochem 64:2332–2338

    PubMed  CAS  Google Scholar 

  • Gruenberg AM, Goldstein RD, Pincus HA (2005) Classification of depression: research and diagnostic criteria: DSM-IV and ICD-10. In: Licinio J, Wong M-L (eds) Biology of Depression: From Novel Insights to therapeutic Strategies. Wiley, Weinheim, pp 1–12

    Google Scholar 

  • Gudelsky GA, Yamamoto BK (2003) Neuropharmacology and neurotoxicity of 3,4-methylene-dioximethamphetamine (MDMA). Methods Mol Med 79:55–73

    PubMed  CAS  Google Scholar 

  • Gwag BJ, Lobner D, Koh JY, Wie MB, Choi DW (1995) Blockade of glutamate receptors unmasks neuronal apoptosis after oxygen-glucose deprivation in vitro. Neuroscience 68:615–619

    PubMed  CAS  Google Scholar 

  • Haines JL, Bailey LR, Grubber JM, Hedges D, Hall JL, West S, Santoro L, Kemmerer B, Sauders A, Roses AD, Small GW, et al (2002) A genomic search for Alzheimer’s disease genes. In: Iqbal K, Sisodia S, Winblad B (eds) Alzheimer’s disease: advances in etiology, pathogenesis and therapeutics. John Wiley and Sons, Ltd., Wiley Online Library

  • Halliwell B, Gutteridge JMC (1993) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  • Hartmann A, Veldhuis JD, Deuschle M, Standhardt H, Heuser I (1997) Twenty-four hour cortisol release profiles in patients with Alzheimer’s and Parkinson’s disease compared to normal controls: ultradian secretory pulsatility and diurnal variation. Neurobiol Aging 18:285–289

    PubMed  CAS  Google Scholar 

  • Hattori A, Luo Y, Umegaki H, Munoz J, Roth GS (1998) Intrastriatal injection of dopamine results in DNA damage and apoptosis in rats. NeuroReport 9:2569–2572

    PubMed  CAS  Google Scholar 

  • Herman JP, Cullinan WE (1997) Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 20:78–84

    PubMed  CAS  Google Scholar 

  • Herman JP, Patel PD, Akil H, Watson SJ (1989) Localization and regulation of glucocorticoid and mineralocorticoid receptor messenger RNAs in the hippocampal formation of the rat. Mol Endocrinol 3:1886–1894

    PubMed  CAS  Google Scholar 

  • Holmes A, Lit Q, Murphy DL, Gold D, Crawley JN (2003) Abnormal anxiety-related behavior in serotonin transporter null mutant mice: the influence of genetic background. Genes Brain Behav 2:365–380

  • Holsboer F, Lauer CJ, Schreiber W, Krieg J-C (1995) Altered hypothalamic-pituitary-adrenocortical regulation in healthy subjects at high familiar risk for affective disorders. Neuroendocrinology 62:340–347

    PubMed  CAS  Google Scholar 

  • Hoogendijk W JG, Meynen G, Endertc E, Hofman MA, Swaab DF (2006) Increased cerebrospinal fluid cortisol level in Alzheimer’s disease is not related to depression. Neurobiol Aging 27:780.e1–780.e2

  • Huang X, Awood CS, Hartshorn MA et al (1999) The Aβ peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochem 38:7609–7616

    CAS  Google Scholar 

  • Issa AM, Rowe W, Gauthier S, Meaney MJ (1990) Hypothalamic-pituitary-adrenal activity in aged, cognitively impaired and cognitively unimpaired rats. J Neurosci 10:3247–3254

    PubMed  CAS  Google Scholar 

  • Jacobson L, Sapolski RM (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenal axis. Endocr Rev 12:118–134

    PubMed  CAS  Google Scholar 

  • Jang J-H, Surh Y-J (2005) Implications of inflammatory stress in Alzheimer’s disease. In: Packer L, Surh Y-J (eds) Oxidative stress, inflammation and health. Taylor and Francis Group, Boca Raton, pp 445–470

    Google Scholar 

  • Jang SW, Liu X, Yepes M, Shepherd KR, Miller GW, Liu Y, Wilson WD, Siao g, Blanchi B, Sun YE, Ye K (2010) A selective TrkB agonist with potent neurotrophic activities by 7—dihydroxyflavone. Proc Natl Acad Sci USA 107:2687–2692

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jellinger KA (2007) Advances in our understanding of neurodegeneration. In: Qureshi GA, Parvez SH (eds) Oxidative stress and neurodegenerative disorders. Elsevier, Amsterdam, pp 1–58

    Google Scholar 

  • Jennings KA, Loder MK, Sheward WJ, Pei Q, Deacon RMJ, Benson MA, Olverman HJ, Hastie ND, Harmar AJ, Shen S, Sharp T (2006) Increased expression of the 5-HT transporter confers a low-anxiety phenotype linked to decreased 5-HT transmission. J Neurosci 26:8955–8964

    PubMed  CAS  Google Scholar 

  • Jimenez DR, Velez PC, Pinxteren J, De Potter W, Ebinger G, Vauquelin G (1993) Binding of serotonin and dopamine to ‘serotonin binding proteins’ in bovine frontal cortex: evidence for iron-induced oxidative mechanisms. Eur J Pharmacol 247:11–21

    Google Scholar 

  • Kaltschmidt PA, Uherek M, Volk B, Baeuerle PA, Kaltschmidt C (1997) Transcriptor factor NF-kβ is activated in primary neurons by amyloid-β peptides and in neurons surrounding early plaques from patients with Alzheimer’s disease. Proc Natl Acad Sci USA 94:2642–2647

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kessing LB, Nilsson FM (2003) Increased risk of developing dementia in patients with major affective disorders compared to patients with other medical illnesses. J Affect Disord 73:261–269

    PubMed  Google Scholar 

  • Khan TK, Alkon DL (2006) An internally controlled peripheral biomarker for Alzheimer’s disease: Erk1 and Erk2 responses to the inflammatory signal bradikinin. Proc Natl Acad Sci USA 103:13203–13203

  • Koo Ko, Russi JW, Ferguson D, Nestler EJ, Duman RS (2010) Nuclear factor—kβ is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc Natl Acad Sci USA 107:2669–2674

    PubMed  CAS  PubMed Central  Google Scholar 

  • Krauss G (2001) Intracellular signal transduction: the protein cascades of the MAP kinase pathways. In: Krauss, G (ed) Biochemistry of signal transduction and regulation, 2nd edn. Wiley, Wheinheim, p:350

  • Kücükakin B, Gögenur I, Reiter RJ, Rosenberg J (2009) Oxidative stress in relation to surgery: is there a role for the antioxidant melatonin? J Surg Res 152:338–347

    PubMed  Google Scholar 

  • Kuhn DM, Geddes TJ (2000) Molecular footprints of neurotoxic amphetamine action. Ann N Y Acad Sci 914:92–103

    PubMed  CAS  Google Scholar 

  • Kumar A, Newberg A, Alavi A, Berlin J, Smith R, Reivich M (1993) Regional cerebral glucose metabolism in late-life depression and Alzheimer disease: a preliminary positron emission tomography study. Proc Natl Acad Sci USA 90:7019–7023

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kunkin J, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA (2004) Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci USA 101:343–347

    Google Scholar 

  • Landfield PW (1994) The role of glucocorticoids in brain aging and Alzheimer’s disease: an integrative physiological hypothesis. Exp Gerontol 29:3–11

    PubMed  CAS  Google Scholar 

  • Landfield PW, Linch G (1978) Hippocampal aging and adrenocorticoids; quantitative correlations. Science 202:1098–1102

    PubMed  CAS  Google Scholar 

  • Lawrence MS, Sapolsky RM (1994) Glucocorticoids accelerate ATP loss following metabolic insults in cultured hippocampal neurons. Brain Res 646:303–306

    PubMed  CAS  Google Scholar 

  • Le DA, Lipton SA (2001) Potential and current use of N-methyl-D-aspartate (NMDA) receptor antagonists in diseases of aging. Drug Aging 18:717–724

    CAS  Google Scholar 

  • Lenox RH, Hahn C-G (2000) Overview of the mechanism of action of lithium in the brain: fifty-year update. J Clin Psychiatry 61((Supp 9)):5–15

    PubMed  CAS  Google Scholar 

  • Li H-L, Wang H-H, Liu S-J, Deng Y-Q, Zhang Y-J, Tian Q, Wang X-C, Chen X-Q, Yang Y, Zhang J-Y, Wang C, Xu H, Liao F-F, Wang J-Z (2007) Phosphorylation of tau antagonizes apoptosis by stabilizing β-catenin, a mechanism involved in Alzheimer’s neurodegeneration. Proc Natl Acad Sci USA 104:3591–3596

    PubMed  CAS  PubMed Central  Google Scholar 

  • Linholm D et al (1994) Activity-dependent and hormonal regulation of neurotrophin mRNA levels in the brain-implications for neuronal plasticity. J Neurobiol 25:1362–1372

    Google Scholar 

  • Littleljohn D, Mangano E, Hayley S (2010) Common pathways to neurodegeneration and co-morbid depression. In: Ritsner MS (ed) Brain protection in schizophrenia, mood and cognitive disorders. Springer, Amsterdam, pp 185–242

    Google Scholar 

  • Liu J, Ames BN (2006) Mitochondrial nutrients: reducing mitochondrial decay to delay or treat cognitive dysfunction, Alzheimer’s disease, and Parkinson’s disease. In: Luo Y, Packer L (eds) Oxidative stress and age-related neurodegeneration. Taylor & Francis Group, Boca Raton, pp 59–106

    Google Scholar 

  • Liu J, Wang X, Shigenaga MK, Yeo HC, Mori A, Ames BN (1996) Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of rats. FASEB J 10:1532–1538

    PubMed  CAS  Google Scholar 

  • Liu RY, Zhou JN, Hoogendijk WJ, van Heerikhuize J, Kamphorst W, Unmehopa UA, Hofman MA, Swab DF (2000) Decreased vasopressin gene expression in the biological clock of Alzheimer disease patients with and without depression. J Neuropathol Exp Neurol 59:314–322

    PubMed  CAS  Google Scholar 

  • Liu RY, Unmehopa UA, Zhou JN, Swaab DF (2006a) Glucocorticoids suppress vasopressin gene expression in human supra-chiasmatic nucleus. J Steroid Biochem Mol Biol 98:248–253

    PubMed  CAS  Google Scholar 

  • Liu Z, Zhu F, Wang G, Xiao Z, Wang H, Tang J, Wang X, Qiu D, Liu W, Cao Z, Li W (2006b) Association of corticotropin-releasing hormone receptor-1 gene SNP and haplotype with major depression. Neurosci Lett 404:358–362

    PubMed  CAS  Google Scholar 

  • Lloyd RV (1995) Mechanism of the manganese-catalyzed auto-oxidation of dopamine. Chem Res Toxicol 8:111–116

    PubMed  CAS  Google Scholar 

  • Luo Y, Hattori A, Munoz J, Qin ZH, Roth GS (1999) Intra-striatal dopamine injection induces apoptosis through oxidation-involved activation of transcription factors AP-1 and NF-kappa B in rats. Mol Pharmacol 56:254–264

    PubMed  CAS  Google Scholar 

  • Lupien SJ, McEwen BS (1997) The acute effects of corticosteroids on cognition: integration of animal and human model studies. Brain Res Rev 24:1–27

    PubMed  CAS  Google Scholar 

  • Lupien SJ, de Leon M, de Santi S, Convit A, Tarshish C, Nair NPV, Thakur M, McEewen BS, Hauger RL, Meaney MJ (1990) Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci 1:69–73

    Google Scholar 

  • Lupien SJ et al (1994) Basal cortisol levels and cognitive deficits in human aging. J Neurosci 14:2893–2903

    PubMed  CAS  Google Scholar 

  • Lupien SJ et al (1995) Longitudinal study of basal cortisol levels in healthy elderly subjects; evidence for sub-groups. Neurobiol Aging 17:95–105

    Google Scholar 

  • Lupien SJ, de Leon M, de Santi S, Convit A, Tarshish C, Nair NPV, Thakur M, McEwen BS, Hauger RL, Meaney MJ (1998) Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci 1:69–73

    PubMed  CAS  Google Scholar 

  • Macdonald J, Galley HF, Webster NR (2003) Oxidative stress and gene expression in sepsis. Br J Anaesth 90:221–232

    PubMed  CAS  Google Scholar 

  • Maes M, Lin A-h, Delmeire L, Gastel AV, Kenis G, De Jongh R, Bosmans E (1999) Elevated serum interleukin-6 (IL-6) and IL-6 receptor concentrations in post-traumatic stress disorder following accidental man-made traumatic events. Biol Psychiatry 45:833–839

    PubMed  CAS  Google Scholar 

  • Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, Perini G, Kubera M, Bob P, Lerer B, Maj M (2009) The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 24:27–53

    PubMed  CAS  Google Scholar 

  • Maes M, Kubera M, Obuchowiczwa E, Goehler L, Brzeszcz J (2011) Depression’s multiple comorbidities explained by (neuro) inflammatory and oxidative & nitrosative stress pathways. Neuro Endocrinol Lett 32:7–24

    PubMed  CAS  Google Scholar 

  • Magarinos AM, Berdugo JM, McEwen BS (1997) Chronic stress alters synaptic terminal structure in hippocampus. Proc Natl Acad Sci USA 94:14002–14008

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mahler P, Davis JB (1996) The role of monoamine metabolism in oxidative glutamate toxicity. J Neurosci 16:6934

    Google Scholar 

  • Mangi HK, Moore GG, Chen G (2000) Clinical and pre-clinical evidence for the neurotrophic effects of mood stabilizers: implications of the pathophysiology and treatment of manic-depressive diseases. Biol Psychiatry 48:740–754

    Google Scholar 

  • Manji HK, Moore GJ, Chen G (1999) Lithium at 50: have the neuroprotective effects of this unique cation been overlooked? Biol Psychiatry 46:929–940

    PubMed  CAS  Google Scholar 

  • Manji HK, Moore GJ, Chen G (2000) Lithium up-regulates the cytoprotective protein Bcl-2 in the CNS in vivo: a role for neurotrophic and neuroprotective effects in manic depressive illness. J Clin Psychiatry 61:82–96

    PubMed  CAS  Google Scholar 

  • Martinowich K, Manji H, Lu B (2007) New insights into BDNF function in depression and anxiety. Nat Neurosci 10:609–615

    Google Scholar 

  • Matrone C, Ciotti MT, Mercanti CD, Marolda R, Calissano P (2008) NGF (Nerve Growth Factor) and BDNF signaling control amyloidogenic route and Aβ production in hippocampal neurons. Proc Natl Acad Sci USA 105:13139–13144

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mayberg HS, Lewis PJ, Regenold W, Wagner HNJ (1994) Paralimbic hypoperfusion in unipolar depression. J Nucl Med 35:929–934

    PubMed  CAS  Google Scholar 

  • Mazurek MF, Growdon JH, Beal MF, Martin JB (1986) CSF vasopressin concentration is reduced in Alzheimer’s disease. Neurol 36:1133–1137

    CAS  Google Scholar 

  • Mazzulli JR, Lind S, Ischiropoulos H (2006) Reactive oxygen and nitrogen species: weapons of neuronal destruction. In: Luo Y, Packer L (eds) Oxidative stress and age-related neurodegeneration. Taylor & Francis Group, Boca Raton, pp 107–120

    Google Scholar 

  • McEwen BS (1999) Stress and hippocampal plasticity. Annu Rev Neurosci 22:105–122

    PubMed  CAS  Google Scholar 

  • McEwen BS, Magarinos AM (2001) Stress and hippocampal plasticity: implications for the pathophysiology of affective disorders. Hum Psychopharmacol 16:S7–S19

    PubMed  CAS  Google Scholar 

  • McIntosh LJ, Hong KE, Sapolsky RM (1995) High glucocorticoid levels decrease some antioxidant enzyme activities in the adult rat brain. Soc Neurosci Abstr 21:2129

    Google Scholar 

  • Meynen G, Unmehopa UA, Hofman MA, Swaab DF, Hoogendijk WJ (2007) Hypothalamic oxytocin mRNA expression and melancholic depression. Mol Psychiatry 12:118–119

    PubMed  CAS  Google Scholar 

  • Milne GL, Gao L, Brooks JD, Morrow JD (2008) The role of oxidative stress in diseases associated with overweight and obesity. In: Packer L, Sies H (eds) Oxidative stress and inflammatory mechanisms in obesity, diabetes, and the metabolic syndrome. Taylor & Francis Group, Boca Raton, pp 33–36

    Google Scholar 

  • Mlynarik M, Zelena D, Bagdy G, Makara GB, Jezova D (2007) Signs of attenuated depression-like behavior in vasopressin deficient Brattleboro rats. Horm Behav 51:395–405

    PubMed  CAS  Google Scholar 

  • Moore GH, Bebchuk JM, Wilds IB, Chen G, Manji HK (2000) Lithium-induced increase in human brain grey matter. The Lancet 356:1241–1242

    CAS  Google Scholar 

  • Moreira PI, Zhu X, Nunomura A, Smith MA, Perry J (2006) Antioxidant therapies in the prevention and treatment of Alzheimer disease. In: Luo Y, Packer L (eds) Oxidative stress and age-related neurodegeneration. Taylor & Francis Group, Boca Raton, pp 131–146

    Google Scholar 

  • Moreira PI, Nunomura A, Honda K, Aliev G, Casadeus G, Zhu X, Smith MA, Perry G (2007) The key role of oxidative stress in Alzheimer’s disease. In: Qureshi GA, Parvez SH (eds) Oxidative stress and neurodegenerative disorders. Elsevier, Amsterdam, pp 267–282

    Google Scholar 

  • Mory E, Danysz W, Quack G (1993) Potential antidepressant properties of amantadine, memantine and bifemelane. Pharmacol Toxicol 72:394–397

    Google Scholar 

  • Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT (1989) Glutamate toxicity in a neuronal cell line involves inhibition of cysteine transport leading to oxidative stress. Neuron 2:1547–1558

    PubMed  CAS  Google Scholar 

  • Murray RK (2003) Red & white blood cells. In: Murray RK, Granner DK, Mayes PA, Rodwell VW (eds) Harper’s illustrated biochemistry. Lange Medical Books/McGraw-Hill, New York, pp 611–613

    Google Scholar 

  • Myint A-M, Kim Y-K (2003) Cytokine-serotonin interactions through indoleamine-2, 3-dioxygenase: a neurodegenerative hypothesis of depression. Med Hypo 61:519–525

    CAS  Google Scholar 

  • Naoi M, Maruyama W, Shamoto-Nagai M, Kato Y, Tanaka M (2005) Oxidative stress in mitochondria: the involvement in neurodegenerative diseases. In: Packer L, Surh Y-J (eds) Oxidative stress, inflammation and health. Taylor and Francis Group, Boca Raton, pp 423–444

    Google Scholar 

  • Nitsch R, Frotscher M (1992) Reduction of posttraumatic trans-neuronal “early gene” activation and dendritic atrophy by the N-methyl-D-aspartate receptor antagonist MK-801. Proc Natl Acad Sci USA 89:5197–5200

    PubMed  CAS  PubMed Central  Google Scholar 

  • Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, Gay K, Wang L, LaFrancois J, Feinstein B, Burns M, Krishnamurthy P, Wen Y, Bhat R, Lewis J, Dickson D, Duff K (2005) Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci USA 102:6990–6995

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nunomura A, Perry G, Aliev G et al (2001) Oxidative damage is the earliest event in Alzheimer’s disease. J Neuropathol Exp Neurol 60:759–767

    PubMed  CAS  Google Scholar 

  • O’Brien JT, Ames D, Schweitzer I, Colman P, Desmond P, Tress B (1996) Clinical and magnetic resonance imaging correlates of hypothalamic-pituitary-adrenal axis function in depression and Alzheimer’s disease. Br J Psychiatry 168:679–687

    PubMed  Google Scholar 

  • Oka A, Belliveau MJ, Rosenberg PA, Volpe JJ (1993) Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms and prevention. J Neurosci 13:1441–1453

    PubMed  CAS  Google Scholar 

  • Ownby RL, Crocco E, Acevedo A, John V, Loewenstein D (2006) Depression and risk for Alzheimer disease. Arch Gen Psychiatry 63:530–538

    PubMed  PubMed Central  Google Scholar 

  • Parker G (2000) Classifying depression? Should paradigms lost be regained? Am J Psychiatry 157:1195–1203

    PubMed  CAS  Google Scholar 

  • Patapoutian A, Reichardt LF (2001) Trk receptors: mediators of neurotrophin action. Cur Opin Neurobiol 11:272–280

    CAS  Google Scholar 

  • Paul IA, Skolnick P (2003) Glutamate and depression: clinical and pre-clinical studies. Ann N Y Acad Sci 1003:250–271

    PubMed  CAS  Google Scholar 

  • Pedrosa R, Soares-da-Silva P (2002) Oxidative and non-oxidative mechanisms of neuronal cell death and apoptosis by L-3,4-dihydroxyphenylalanine (L-DOPA) and dopamine. Braz J Pharmacol 137:1305–1313

    CAS  Google Scholar 

  • Perry G, Nunomura A, Raina AK, Smith MA (2000a) Aβ junkies. The Lancet 355:757

    CAS  Google Scholar 

  • Perry G, Raina AK, Nunomura A et al (2000b) How important is oxidative damage? Lessons from Alzheimer’s disease. Free Radic Biol Med 28:831–834

    PubMed  CAS  Google Scholar 

  • Perry G, Cash AD, Srinivas R, Smith MA (2002) Metals and oxidative homeostasis in Alzheimer’s disease. Drug Dev Res 56:293–299

    CAS  Google Scholar 

  • Peters EJ, Slager SL, McGrath PJ, Knowles JA, Hamilton SP (2004) Investigation of serotonin-related genes in antidepressant responses. Mol Psychiatry 9:879–889

    PubMed  CAS  Google Scholar 

  • Plotsky PM (1991) Pathways to the secretion of adrenocorticotropin: a view from the portal. J Neuroendocrinol 3:1–9

    PubMed  CAS  Google Scholar 

  • Pomara N, Sidtis J (2009) Does cortical thinning in persons at increased risk for major depression also increase their risk for Alzheimer’s disease? Proc Natl Acad Sci USA 106:E82

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pomara N, Stanley M, Rhiew HB, Bagne CA, Deptula D, Galloway MP, Tanimoto K, Verebey K, Tamminga CA (1988) Loss of the cortisol response to naltrexone in Alzheimer’s disease. Biol Psychiatry 23:726–733

    PubMed  CAS  Google Scholar 

  • Porter NM, Landsfield PW (1998) Stress hormones and brain aging; adding injury to insult? Nat Neurosci 1:3–4

    PubMed  CAS  Google Scholar 

  • Radley JJ, Sawchenko PE (2011) A common substrate for prefrontal and hippocampal inhibition of the neuroendocrine stress response. J Neurosci 31:9683–9695

    PubMed  CAS  PubMed Central  Google Scholar 

  • Raison CL, Purselle DC, Capuron L, Miller AH (2005) Treatment of depression in medical illness. In: Licinio J, Wong M-L (eds) Biology of depression: from novel insights to therapeutic strategies. Wiley, Weinheim, pp 253–278

    Google Scholar 

  • Rajkowska G (2000) Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry 48:766–777

    PubMed  CAS  Google Scholar 

  • Rasmuson A, Nasman V, Carlstrom K, Olsson T (2002) Increased levels of adrenocortical and gonadal hormones in mild to moderate Alzheimer’s disease. Dement Geriatr Cogn Disord 13:74–79

    PubMed  CAS  Google Scholar 

  • Reisberg B, Doody R, Stöffler A, Schnutt F, Ferris S, Möbius H (2003) Memantine in moderate to severe Alzheimer’s disease. N Engl J Med 348:1333–1342

    PubMed  CAS  Google Scholar 

  • Roca CA, Schmidt PJ, Deuster PA, Danaceau MA, Altemus M, Petnam K, Chrousos GP, Nieman LK, Rubinow DR (2005) Sex-related differences in stimulated hypothalamic-pituitary-adrenal axis during induced gonadal suppression. J Clin Endocrinol and Metab 90:4224–4231

    Google Scholar 

  • Rodrigues R, Bonda DJ, Perry G, Castellani RJ, Casadesus G, Lee H-g, Lee H-P, Wang X, Zhu X, Petersen RB, Smith MA (2010) Oxidative stress and neurodegeneration: an inevitable consequence of aging: implications for therapy. In: Ritsner MS (ed) Brain protection in schizophrenia, mood and cognitive disorders. Springer, Netherlands, pp 305–325

  • Rogóz Z, Skuza G, Maj J, Danysz W (2002) Synergistic effect of uncompetitive NMDA receptor antagonists and antidepressant drugs in the forced swimming test in rats. Neuropharmacology 42:1024–1030

    PubMed  Google Scholar 

  • Roy BN, Reid RL, Van Vugt DA (1999) The effects of estrogen and progesterone on corticotropin-releasing hormone and arginine vasopressin messenger ribonucleic acid levels in the paraventricular nucleus and supraoptic nucleus of the rhesus monkey. Endocrinology 140:2191–2198

    PubMed  CAS  Google Scholar 

  • Sapolski MS (2000) The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Biol Psychiatry 48:766–777

    Google Scholar 

  • Sapolsky RM (2001) Depression, antidepressants, and the shrinking hippocampus. Proc Natl Acad Sci USA 98:12320–12322

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sapolsky RM, Uno H, Rebert CS, Finch CE (1990) Hippocampal damage associated with prolonged glucocorticoid exposure. J Neurosci 10:2897–2902

    PubMed  CAS  Google Scholar 

  • Scolville WB, Milner B (1957) Hippocampal damage and memory dysfunction. J Neurol Psychiatry 20:11–21

    Google Scholar 

  • Segal RA (2003) Selectivity in neurotrophin signaling: theme and variations. Annu Rev Neurosci 26:299–330

    PubMed  CAS  Google Scholar 

  • Shanmugham B, Alexopoulus G (2005) Geriatric depression. In: Licinio H, Wong M-L (eds) Biology of depression: from novel insights to therapeutic strategies. Willey, Weinheim, pp 319–340

    Google Scholar 

  • Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW (1996) Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA 93:3908–3913

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shorter E, Fink M (2010) Cortisol. In: Shorter E, Fink M (eds) Endocrine psychiatry: solving the riddle of melancholia. Oxford University Press, London, pp 31–50

    Google Scholar 

  • Smith MA, Drew KL, Nunomura A, Takeda A, Hirai K, Zhu X, Atwood CS, Raina AK, Rottkamp CA, Sayre LM, Friedland RP, Perry G (2002) Amyloid-β, tau alterations and mitochondrial dysfunction in Alzheimer disease: the chickens or the eggs? Neurochem Int 40:527–531

    PubMed  CAS  Google Scholar 

  • Snyder SH (2011) Serotonin, cytokines, p11, and depression. Proc Natl Acad Sci USA 108:8923–8924

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sopolsky RM, Krey LC, McEwen BS (1986) The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocrinol Rev 7:284–301

    Google Scholar 

  • Sotiropoulos I, Catania C, Pinto LG, Silvia R, Pollerber GE, Takashima A, Sousa N, Almeida OFX (2011) Stress acts cumulatively to precipitate Alzheimer’s disease-like tau pathology and cognitive deficits. J Neurosci 21:7840–7847

    Google Scholar 

  • Sprague JE, Everman SL, Nichols DE (1998) An integrated hypothesis for the serotonergic axonal loss induced by 3, 4-methylenedioxymethamphetamine. Neurotoxicology 19:427–441

    PubMed  CAS  Google Scholar 

  • Starkstein SE, Jorge R, Mizrahi R, Robinson RG (2005) The construct of minor and major depression in Alzheimer’s disease. Am J Psychiatry 162:2086–2093

    PubMed  Google Scholar 

  • Stokes KY, Tailor A, Granger DN (2005) Role of oxidative stress in hypercholesterolemia-Induced inflammation. In: Surh Y-J, Packer L (eds) Oxidative stress, inflammation and health. Taylor and Francis Group, Boca Raton, pp 221–244

    Google Scholar 

  • Swaab DA, Bao A-M (2011) (Re-) activation of neurons in aging and dementia: lessons from the hypothalamus. Exp Gerontol 46:178–184

    PubMed  CAS  Google Scholar 

  • Swaab DF, Gao AM, Lucassen PJ (2005) The stress system in the human brain in depression and neurodegeneration. Res Rev 4:141–194

    CAS  Google Scholar 

  • Terracciano A, Lobina M, Peras MG, Mulas A, Cannas A, Meirelles O, Sutin AR, Zonderman AB, Uda M, Crisponi L, Schlessinger D (2011) Neuroticism, depressive symptoms, and serum BDNF. Psychosom Med 73:638–642

    PubMed  CAS  Google Scholar 

  • Thomas AJ, Morris C, Davis S, Jackson E, Harrison R, O’brien JT (2007) Soluble cell adhesion molecules in late-life depression. Int Psychogeriatr 4:1–7

    Google Scholar 

  • Toro G, Rodrigo R (2009) Oxidative stress, basic overview. In: Rodrigo R (ed) Oxidative stress and antioxidants: their role in human disease. Nova Science Publishers Inc., New York, pp 1–24

    Google Scholar 

  • Vallone D, Picetti R, Borrelli E (2000) Structure and function of dopamine receptors. Neurosci Biobehav Rev 24:125–132

    PubMed  CAS  Google Scholar 

  • Vincent SL, Todtenkopf MS, Benes FM (1997) A comparison of the density of pyramidal and not pyramidal neurons in the anterior cingulate cortex of schizophrenics and manic-depressives. Soc Neurosci 23:2199

    Google Scholar 

  • Warner-Schmidt JL, Vanover KE, Chen EY, Marshall JJ, Greengard P (2011) Antidepressant effects of selective serotonin reuptake inhibitors (SSRI) are attenuated by anti-inflammatory drugs in mice and humans. Proc Natl Acad Sci USA 108:9262–9267

    PubMed  CAS  Google Scholar 

  • Weingarten P, Bermak J, Zhou QY (2001) Evidence for non-oxidative dopamine cytotoxicity: potent activation of NF-kappa B and lack of protection by anti-oxidants. J Neurochem 76:1794–1804

    PubMed  CAS  Google Scholar 

  • Wilson RS, Barnes LL, Mendes de Leon CF, Aggarwal NT, Schneider JA, Bach J, Pilat J, Beckett LA, Arnold SE, Evans DA, Bennett DA (2002) Depressive symptoms, cognitive decline, and risk of AD in older persons. Neurology 59:364–370

    PubMed  Google Scholar 

  • Woo NH, Teng HK, Siao C-J, Chiaruttini C, Pang PT, Milner TA, Hempstead BL, Lu B (2005) Activation of p75NTR by pro-BDNF facilitates hippocampal long-term depression. Nat Neurosci 8:1069–1077

    PubMed  CAS  Google Scholar 

  • Wooleley CS, Weiland NG, McEwen BS, Schwartzkroin PA (1997) Estradiol increases the sensitivity of hippocampal CA1 pyramidal cells to NMDA receptor-mediated synaptic input: correlation with dendritic spine density. J Neurosci 17:1848–1859

    Google Scholar 

  • Woolley CS, Gould E, Frankfurt M, McEwen CS (1990) Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J Neurosci 10:4035–4039

    PubMed  CAS  Google Scholar 

  • Woolley CS, Gould E, Sakay R, Spencer R, McEwen BS (1998) Effects of aldosterone or RU2862 treatment on adrenalectomy-induced cell death in the dentate gyrus of the adult rat. Brain Res 554:312–315

    Google Scholar 

  • Wright SL, Persad C (2007) Distinguishing between depression and dementia in older persons: neuropsychological and neuropathological correlates. J Geriatr Psychiatry Neurol 20:189–198

    PubMed  Google Scholar 

  • Wurster AL, Grusby MJ (2004) Cytokines. In: Lennarz WJ, Lane MD (eds) Encyclopedia of biological chemistry. Elsevier Inc, Oxford, pp 550–555

    Google Scholar 

  • Zaudig M (2005) The prodromes and early detection of Alzheimer’s disease. In: Maj M, Lopez-Ibor JJ, Sartorius N, Sato M, Okasha A (eds) Early detection and management of mental disorders. Wiley, England, pp 277–294

    Google Scholar 

Download references

Acknowledgments

George Perry is supported by the Semmes Foundation, Inc.; the Alzheimer Association; and by a grant from the National Institute on Minority Health and Health Disparities (G12MD007591) from the National Institutes of Health.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Perry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, R., Petersen, R.B. & Perry, G. Parallels Between Major Depressive Disorder and Alzheimer’s Disease: Role of Oxidative Stress and Genetic Vulnerability. Cell Mol Neurobiol 34, 925–949 (2014). https://doi.org/10.1007/s10571-014-0074-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0074-5

Keywords

Navigation