Skip to main content

Advertisement

Log in

d-Serine and Serine Racemase are Localized to Neurons in the Adult Mouse and Human Forebrain

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

d-Serine, a co-agonist at the NMDA receptor (NMDAR), is synthesized from l-serine by the enzyme serine racemase (SR), which is heavily expressed in the forebrain. Although SR was originally reported to be localized exclusively to astrocytes, recent conditional knock out results demonstrate that little SR is expressed in forebrain astrocytes. As a consequence, the cellular location of its product, d-serine, in the brain is also uncertain. Immunocytochemistry now indicates that SR is expressed primarily in forebrain glutamatergic neurons with the remainder in GABAergic interneurons. We utilized SR deficient (SR−/−) mice, which have <15 % of normal d-serine levels, to validate and optimize a d-serine immunohistochemical method. Nearly all of the d-serine in neocortex and hippocampus (HP) is found in neurons, with virtually no d-serine co-localizing with two astrocyte markers. Interestingly, only a subset of the d-serine positive neurons contained SR in the neocortex and HP. Greater than half of the d-serine positive neurons were GABAergic interneurons, with a majority of these neurons containing parvalbumin and/or somatostatin. Only ~25–40 % of interneurons expressed SR in the neocortex and HP. Finally, we demonstrate in human post-mortem neocortex that SR is found in both excitatory and inhibitory neurons, but not in S100β-containing astrocytes. In sum, these findings conclusively demonstrate that the majority of d-serine is both synthesized and stored in neurons. It will be important to determine the functional significance for the separation of synthesis and storage of d-serine in neurons, as well as the presence of this NMDAR co-agonist in GABAergic interneurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aprison MH (1990) The discovery of the neurotransmitter role of glycine. In: Ottersen OP, Storm-Mathisen J (eds) Glycine neurotransmission. Wiley, New York, pp 1–23

    Google Scholar 

  • Balu DT, Coyle JT (2011) Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia. Neurosci Biobehav Rev 35(3):848–870. doi:10.1016/j.neubiorev.2010.10.005

    Google Scholar 

  • Balu DT, Li Y, Puhl MD, Benneyworth MA, Basu AC, Takagi S, Bolshakov VY, Coyle JT (2013) Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction. Proc Natl Acad Sci USA 110(26):E2400–2409. doi:10.1073/pnas.1304308110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Basu AC, Tsai GE, Ma CL, Ehmsen JT, Mustafa AK, Han L, Jiang ZI, Benneyworth MA, Froimowitz MP, Lange N, Snyder SH, Bergeron R, Coyle JT (2009) Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol Psychiatry 14(7):719–727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benneyworth MA, Li Y, Basu AC, Bolshakov VY, Coyle JT (2012) Cell selective conditional null mutations of serine racemase demonstrate a predominate localization in cortical glutamatergic neurons. Cell Mol Neurobiol. doi:10.1007/s10571-012-9808-4

    PubMed  Google Scholar 

  • Boehning D, Snyder SH (2003) Novel neural modulators. Annu Rev Neurosci 26:105–131. doi:10.1146/annurev.neuro.26.041002.131047

    Article  CAS  PubMed  Google Scholar 

  • Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459(7247):663–667. doi:10.1038/nature08002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Curcio L, Podda MV, Leone L, Piacentini R, Mastrodonato A, Cappelletti P, Sacchi S, Pollegioni L, Grassi C, D’Ascenzo M (2013) Reduced d-serine levels in the nucleus accumbens of cocaine-treated rats hinder the induction of NMDA receptor-dependent synaptic plasticity. Brain. doi:10.1093/brain/awt036

    PubMed  Google Scholar 

  • DeFelipe J, Lopez-Cruz PL, Benavides-Piccione R, Bielza C, Larranaga P, Anderson S, Burkhalter A, Cauli B, Fairen A, Feldmeyer D, Fishell G, Fitzpatrick D, Freund TF, Gonzalez-Burgos G, Hestrin S, Hill S, Hof PR, Huang J, Jones EG, Kawaguchi Y, Kisvarday Z, Kubota Y, Lewis DA, Marin O, Markram H, McBain CJ, Meyer HS, Monyer H, Nelson SB, Rockland K, Rossier J, Rubenstein JL, Rudy B, Scanziani M, Shepherd GM, Sherwood CC, Staiger JF, Tamas G, Thomson A, Wang Y, Yuste R, Ascoli GA (2013) New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci 14(3):202–216. doi:10.1038/nrn3444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ding X, Ma N, Nagahama M, Yamada K, Semba R (2011) Localization of d-serine and serine racemase in neurons and neuroglias in mouse brain. Neurol Sci 32(2):263–267. doi:10.1007/s10072-010-0422-2

    Article  PubMed  Google Scholar 

  • Ehmsen JT, Ma TM, Sason H, Rosenberg D, Ogo T, Furuya S, Snyder SH, Wolosker H (2013) d-Serine in glia and neurons derives from 3-phosphoglycerate dehydrogenase. J Neurosci 33(30):12464–12469. doi:10.1523/JNEUROSCI.4914-12.2013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foltyn VN, Bendikov I, De Miranda J, Panizzutti R, Dumin E, Shleper M, Li P, Toney MD, Kartvelishvily E, Wolosker H (2005) Serine racemase modulates intracellular d-serine levels through an alpha, beta-elimination activity. J Biol Chem 280(3):1754–1763. doi:10.1074/jbc.M405726200

    Article  CAS  PubMed  Google Scholar 

  • Fossat P, Turpin FR, Sacchi S, Dulong J, Shi T, Rivet JM, Sweedler JV, Pollegioni L, Millan MJ, Oliet SH, Mothet JP (2012) Glial d-serine gates NMDA receptors at excitatory synapses in prefrontal cortex. Cereb Cortex 22(3):595–606. doi:10.1093/cercor/bhr130

    Article  PubMed  Google Scholar 

  • Helboe L, Egebjerg J, Moller M, Thomsen C (2003) Distribution and pharmacology of alanine–serine–cysteine transporter 1 (asc-1) in rodent brain. Eur J Neurosci 18(8):2227–2238

    Article  PubMed  Google Scholar 

  • Houser CR (2007) Interneurons of the dentate gyrus: an overview of cell types, terminal fields and neurochemical identity. Prog Brain Res 163:217–232. doi:10.1016/S0079-6123(07)63013-1

    Article  CAS  PubMed  Google Scholar 

  • Kartvelishvily E, Shleper M, Balan L, Dumin E, Wolosker H (2006) Neuron-derived d-serine release provides a novel means to activate N-methyl-d-aspartate receptors. J Biol Chem 281(20):14151–14162. doi:10.1074/jbc.M512927200

    Article  CAS  PubMed  Google Scholar 

  • Kishi N, Macklis JD (2004) MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol Cell Neurosci 27(3):306–321. doi:10.1016/j.mcn.2004.07.006

    Article  CAS  PubMed  Google Scholar 

  • Klausberger T (2009) GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. Eur J Neurosci 30(6):947–957. doi:10.1111/j.1460-9568.2009.06913.x

    Article  PubMed  Google Scholar 

  • Martineau M, Shi T, Puyal J, Knolhoff AM, Dulong J, Gasnier B, Klingauf J, Sweedler JV, Jahn R, Mothet JP (2013) Storage and uptake of d-serine into astrocytic synaptic-like vesicles specify gliotransmission. J Neurosci 33(8):3413–3423. doi:10.1523/JNEUROSCI.3497-12.2013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Megias M, Emri Z, Freund TF, Gulyas AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102(3):527–540

    Article  CAS  PubMed  Google Scholar 

  • Miya K, Inoue R, Takata Y, Abe M, Natsume R, Sakimura K, Hongou K, Miyawaki T, Mori H (2008) Serine racemase is predominantly localized in neurons in mouse brain. J Comp Neurol 510(6):641–654. doi:10.1002/cne.21822

    Article  CAS  PubMed  Google Scholar 

  • Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, Rogawski MA, Snyder SH (2000) d-serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc Natl Acad Sci USA 97(9):4926–4931

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter d-serine. Proc Natl Acad Sci USA 102(15):5606–5611. doi:10.1073/pnas.0408483102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Papouin T, Ladepeche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet JP, Oliet SH (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150(3):633–646. doi:10.1016/j.cell.2012.06.029

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg D, Artoul S, Segal AC, Kolodney G, Radzishevsky I, Dikopoltsev E, Foltyn VN, Inoue R, Mori H, Billard JM, Wolosker H (2013) Neuronal d-serine and glycine release via the asc-1 transporter regulates NMDA receptor-dependent synaptic activity. J Neurosci 33(8):3533–3544. doi:10.1523/JNEUROSCI.3836-12.2013

    Article  CAS  PubMed  Google Scholar 

  • Rudy B, Fishell G, Lee S, Hjerling-Leffler J (2011) Three groups of interneurons account for nearly 100 % of neocortical GABAergic neurons. Dev Neurobiol 71(1):45–61. doi:10.1002/dneu.20853

    Article  PubMed Central  PubMed  Google Scholar 

  • Schell MJ, Molliver ME, Snyder SH (1995) d-Serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci USA 92(9):3948–3952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schell MJ, Brady RO Jr, Molliver ME, Snyder SH (1997) d-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J Neurosci 17(5):1604–1615

    CAS  PubMed  Google Scholar 

  • Verrall L, Walker M, Rawlings N, Benzel I, Kew JN, Harrison PJ, Burnet PW (2007) d-Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia. Eur J Neurosci 26(6):1657–1669. doi:10.1111/j.1460-9568.2007.05769.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Wolosker H (2011) Serine racemase and the serine shuttle between neurons and astrocytes. Biochim Biophys Acta 1814(11):1558–1566. doi:10.1016/j.bbapap.2011.01.001

    Article  CAS  PubMed  Google Scholar 

  • Wolosker H, Blackshaw S, Snyder SH (1999) Serine racemase: a glial enzyme synthesizing d-serine to regulate glutamate-N-methyl-d-aspartate neurotransmission. Proc Natl Acad Sci USA 96(23):13409–13414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolosker H, Dumin E, Balan L, Foltyn VN (2008) d-Amino acids in the brain: d-serine in neurotransmission and neurodegeneration. FEBS J 275(14):3514–3526. doi:10.1111/j.1742-4658.2008.06515.x

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Roby KD, Callaway EM (2010) Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. J Comp Neurol 518(3):389–404. doi:10.1002/cne.22229

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Drs. Sabina Berretta, Sue Andersen, and Ole Isaacson for the generous use of their microscopes. We would also like to thank Harry Pantazopoulos, Rebecca Shivangi Misra, Anita Bechtholt, Jesse McLean, and John Muschamp for technical advice, and Jiamin Feng for animal colony maintenance and genotyping. We thank Francine Benes and the staff of the Harvard Brain Tissue Resource Center that is supported in part by PHS grant number R24-MH068855 for providing all the tissues, as well as the study subjects and their families. An Andrew P. Merrill Research Fellowship and Phyllis & Jerome Lyle Rappaport Mental Health Research Scholars Award (DTB), as well as the National Institutes of Health grants R01MH05190 and P50MH0G0450 (JTC) supported this work.

Conflict of interest

JTC has served as a consultant for EnVivo, and Abbvie in the last 2 years. A patent owned by Massachusetts General Hospital for the use of d-serine as a treatment for serious mental illness could yield royalties for Dr. Coyle. The remaining authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph T. Coyle.

Additional information

Darrick T. Balu and Shunsuke Takagi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balu, D.T., Takagi, S., Puhl, M.D. et al. d-Serine and Serine Racemase are Localized to Neurons in the Adult Mouse and Human Forebrain. Cell Mol Neurobiol 34, 419–435 (2014). https://doi.org/10.1007/s10571-014-0027-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0027-z

Keywords

Navigation