Skip to main content

Advertisement

Log in

Cannabinoid Effects on β Amyloid Fibril and Aggregate Formation, Neuronal and Microglial-Activated Neurotoxicity In Vitro

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cannabinoid (CB) ligands have demonstrated neuroprotective properties. In this study we compared the effects of a diverse set of CB ligands against β amyloid-mediated neuronal toxicity and activated microglial-conditioned media-based neurotoxicity in vitro, and compared this with a capacity to directly alter β amyloid (Aβ) fibril or aggregate formation. Neuroblastoma (SH-SY5Y) cells were exposed to Aβ1–42 directly or microglial (BV-2 cells) conditioned media activated with lipopolysaccharide (LPS) in the presence of the CB1 receptor-selective agonist ACEA, CB2 receptor-selective agonist JWH-015, phytocannabinoids Δ9-THC and cannabidiol (CBD), the endocannabinoids 2-arachidonoyl glycerol (2-AG) and anandamide or putative GPR18/GPR55 ligands O-1602 and abnormal-cannabidiol (Abn-CBD). TNF-α and nitrite production was measured in BV-2 cells to compare activation via LPS or albumin with Aβ1–42. Aβ1–42 evoked a concentration-dependent loss of cell viability in SH-SY5Y cells but negligible TNF-α and nitrite production in BV-2 cells compared to albumin or LPS. Both albumin and LPS-activated BV-2 conditioned media significantly reduced neuronal cell viability but were directly innocuous to SH-SY5Y cells. Of those CB ligands tested, only 2-AG and CBD were directly protective against Aβ-evoked SH-SY5Y cell viability, whereas JWH-015, THC, CBD, Abn-CBD and O-1602 all protected SH-SY5Y cells from BV-2 conditioned media activated via LPS. While CB ligands variably altered the morphology of Aβ fibrils and aggregates, there was no clear correlation between effects on Aβ morphology and neuroprotective actions. These findings indicate a neuroprotective action of CB ligands via actions at microglial and neuronal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashton JC (2012) The atypical cannabinoid O-1602: targets, actions, and the central nervous system. Cent Nerv Syst Agents Med Chem 12(3):233–239

    Article  CAS  PubMed  Google Scholar 

  • Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K, Wanker EE (2010) EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proc Natl Acad Sci USA 107(17):7710–7715

    Article  CAS  PubMed  Google Scholar 

  • Bisogno T, Di Marzo V (2008) The role of the endocannabinoid system in Alzheimer’s disease: facts and hypotheses. Curr Pharm Des 14(23):2299–3305

    Article  CAS  PubMed  Google Scholar 

  • Camacho IE, Serneels L, Spittaels K, Merchiers P, Dominguez D, De Strooper B (2004) Peroxisome-proliferator-activated receptor gamma induces a clearance mechanism for the amyloid-beta peptide. J Neurosci 24(48):10908–10917

    Article  CAS  PubMed  Google Scholar 

  • Cecchi C, Pensalfini A, Liguri G, Baglioni S, Fiorillo C, Guadagna S, Zampagni M, Formigli L, Nosi D, Stefani M (2008a) Differentiation increases the resistance of neuronal cells to amyloid toxicity. Neurochem Res 33(12):2516–2531

    Article  CAS  PubMed  Google Scholar 

  • Cecchi C, Pensalfini A, Stefani M, Baglioni S, Fiorillo C, Cappadona S, Caporale R, Nosi D, Ruggiero M, Liguri G (2008b) Replicating neuroblastoma cells in different cell cycle phases display different vulnerability to amyloid toxicity. J Mol Med (Berl) 86(2):197–209

    Article  CAS  Google Scholar 

  • Chen X, Zhang J, Chen C (2011) Endocannabinoid 2-arachidonoylglycerol protects neurons against beta-amyloid insults. Neuroscience 178:159–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen R, Zhang J, Wu Y, Wang D, Feng G, Tang YP, Teng Z, Chen C (2012) Monoacylglycerol lipase is a therapeutic target for Alzheimer’s disease. Cell Rep 2(5):1329–1339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dirikoc S, Priola SA, Marella M, Zsurger N, Chabry J (2007) Nonpsychoactive cannabidiol prevents prion accumulation and protects neurons against prion toxicity. J Neurosci 27(36):9537–9544

    Article  CAS  PubMed  Google Scholar 

  • Egger T, Schuligoi R, Wintersperger A, Amann R, Malle E, Sattler W (2003) Vitamin E (alpha-tocopherol) attenuates cyclo-oxygenase 2 transcription and synthesis in immortalized murine BV-2 microglia. Biochem J 370(Pt 2):459–467

    Article  CAS  PubMed  Google Scholar 

  • Esposito G, De Filippis D, Maiuri MC, De Stefano D, Carnuccio R, Iuvone T (2006) Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in β-amyloid stimulated PC12 neurons through p38 MAP kinase and NF-κB involvement. Neurosci Lett 399(1–2):91–95

    Article  CAS  PubMed  Google Scholar 

  • Esposito G, Scuderi C, Savani C, Steardo L Jr, De Filippis D, Cottone P, Iuvone T, Cuomo V, Steardo L (2007) Cannabidiol in vivo blunts β-amyloid induced neuroinflammation by suppressing IL-1β and iNOS expression. Br J Pharmacol 151(8):1272–1279

    Article  CAS  PubMed  Google Scholar 

  • Esposito G, Scuderi C, Valenza M, Togna GI, Latina V, De Filippis D, Cipriano M, Carratu MR, Iuvone T, Steardo L (2011) Cannabidiol reduces Aβ-induced neuroinflammation and promotes hippocampal neurogenesis through PPARγ involvement. PLoS One 6(12):e28668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandez-Ruiz J, Garcia C, Sagredo O, Gomez-Ruiz M, de Lago E (2010) The endocannabinoid system as a target for the treatment of neuronal damage. Expert Opin Ther Targets 14(4):387–404

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Ruiz J, Sagredo O, Pazos MR, Garcia C, Pertwee R, Mechoulam R, Martinez-Orgado J (2013) Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid? Br J Clin Pharmacol 75(2):323–333

    Article  CAS  PubMed  Google Scholar 

  • Fraga D, Raborn ES, Ferreira GA, Cabral GA (2011) Cannabinoids inhibit migration of microglial-like cells to the HIV protein Tat. J Neuroimmune Pharmacol 6(4):566–577

    Article  PubMed  Google Scholar 

  • Galante D, Corsaro A, Florio T, Vella S, Pagano A, Sbrana F, Vassalli M, Perico A, D’Arrigo C (2012) Differential toxicity, conformation and morphology of typical initial aggregation states of Aβ1–42 and Aβpy3–42 beta-amyloids. Int J Biochem Cell Biol 44(11):2085–2093

    Article  CAS  PubMed  Google Scholar 

  • Hampson AJ, Grimaldi M, Axelrod J, Wink D (1998) Cannabidiol and Δ9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci USA 95(14):8268–8273

    Article  CAS  PubMed  Google Scholar 

  • Harvey BS, Musgrave IF, Ohlsson KS, Fransson Å, Smid SD (2011) The green tea polyphenol (–)-epigallocatechin-3-gallate inhibits amyloid-β evoked fibril formation and neuronal cell death in vitro. Food Chem 129(4):1729–1736

    Article  CAS  Google Scholar 

  • Harvey BS, Ohlsson KS, Maag JL, Musgrave IF, Smid SD (2012) Contrasting protective effects of cannabinoids against oxidative stress and amyloid-beta evoked neurotoxicity in vitro. Neurotoxicology 33(1):138–146

    Article  CAS  PubMed  Google Scholar 

  • Hooper C, Pinteaux-Jones F, Fry VA, Sevastou IG, Baker D, Heales SJ, Pocock JM (2009) Differential effects of albumin on microglia and macrophages; implications for neurodegeneration following blood-brain barrier damage. J Neurochem 109(3):694–705

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Crick SL, Bu G, Frieden C, Pappu RV, Lee JM (2009) Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide. Proc Natl Acad Sci USA 106(48):20324–20329

    Article  CAS  PubMed  Google Scholar 

  • Hudson SA, Ecroyd H, Kee TW, Carver JA (2009) The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds. FEBS J 276(20):5960–5972

    Article  CAS  PubMed  Google Scholar 

  • Iuvone T, Esposito G, Esposito R, Santamaria R, Di Rosa M, Izzo AA (2004) Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells. J Neurochem 89(1):134–141

    Article  CAS  PubMed  Google Scholar 

  • Jucker M, Walker LC (2011) Pathogenic protein seeding in alzheimer disease and other neurodegenerative disorders. Ann Neurol 70(4):532–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karl T, Cheng D, Garner B, Arnold JC (2012) The therapeutic potential of the endocannabinoid system for Alzheimer’s disease. Expert Opin Ther Targets 16(4):407–420

    Article  CAS  PubMed  Google Scholar 

  • Kerr DM, Harhan B, Okine BN, Egan LJ, Finn DP, Roche M (2012) The monoacylglycerol lipase inhibitor JZL184 attenuates LPS-induced increases in cytokine expression in the rat frontal cortex and plasma: differential mechanisms of action. Br J Pharmacol. doi:10.1111/j.1476-5381.2012.02237.x

    Google Scholar 

  • Khurana R, Coleman C, Ionescu-Zanetti C, Carter SA, Krishna V, Grover RK, Roy R, Singh S (2005) Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol 151(3):229–238

    Article  CAS  PubMed  Google Scholar 

  • Koppel J, Davies P (2008) Targeting the endocannabinoid system in Alzheimer’s disease. J Alzheimers Dis 15(3):495–504

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kreutz S, Koch M, Bottger C, Ghadban C, Korf HW, Dehghani F (2009) 2-Arachidonoylglycerol elicits neuroprotective effects on excitotoxically lesioned dentate gyrus granule cells via abnormal-cannabidiol-sensitive receptors on microglial cells. Glia 57(3):286–294

    Article  PubMed  Google Scholar 

  • Ladiwala AR, Lin JC, Bale SS, Marcelino-Cruz AM, Bhattacharya M, Dordick JS, Tessier PM (2010) Resveratrol selectively remodels soluble oligomers and fibrils of amyloid Aβ into off-pathway conformers. J Biol Chem 285(31):24228–24237

    Article  CAS  PubMed  Google Scholar 

  • Langer F, Eisele YS, Fritschi SK, Staufenbiel M, Walker LC, Jucker M (2011) Soluble Aβ seeds are potent inducers of cerebral β-amyloid deposition. J Neurosci 31(41):14488–14495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McHugh D, Tanner C, Mechoulam R, Pertwee RG, Ross RA (2008) Inhibition of human neutrophil chemotaxis by endogenous cannabinoids and phytocannabinoids: evidence for a site distinct from CB1 and CB2. Mol Pharmacol 73(2):441–450

    Article  CAS  PubMed  Google Scholar 

  • McHugh D, Hu SS, Rimmerman N, Juknat A, Vogel Z, Walker JM, Bradshaw HB (2010) N-arachidonoyl glycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative abnormal cannabidiol receptor. BMC Neurosci 11:44

    Article  PubMed Central  PubMed  Google Scholar 

  • Milton NGN (2002) Anandamide and noladin ether prevent neurotoxicity of the human amyloid-β peptide. Neurosci Lett 332(2):127–130

    Article  CAS  PubMed  Google Scholar 

  • Pan X-d, Zhu Y-g, Lin N, Zhang J, Ye Q-y, Huang H-p, Chen X-c (2011) Microglial phagocytosis induced by fibrillar beta-amyloid is attenuated by oligomeric beta-amyloid: implications for Alzheimer’s disease. Mol Neurodegener 6(1):45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Panikashvili D, Mechoulam R, Beni SM, Alexandrovich A, Shohami E (2005) CB1 cannabinoid receptors are involved in neuroprotection via NF-kappa B inhibition. J Cereb Blood Flow Metab 25(4):477–484

    Article  CAS  PubMed  Google Scholar 

  • Papa VM, Shen ML, Ou DW (1990) The effects of pH and temperature on the in vitro bindings of delta-9-tetrahydrocannabinol and other cannabinoids to bovine serum albumin. J Pharm Biomed Anal 8(4):353–356

    Article  CAS  PubMed  Google Scholar 

  • Pertwee RG, Howlett AC, Abood ME, Alexander SPH, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA (2010) International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62(4):588–631

    Article  CAS  PubMed  Google Scholar 

  • Piro JR, Benjamin DI, Duerr JM, Pi Y, Gonzales C, Wood KM, Schwartz JW, Nomura DK, Samad TA (2012) A dysregulated endocannabinoid-eicosanoid network supports pathogenesis in a mouse model of Alzheimer’s disease. Cell Rep 1(6):617–623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramirez BG, Blazquez C, Gomez del Pulgar T, Guzman M, de Ceballos ML (2005) Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 25(8):1904–1913

    Article  CAS  PubMed  Google Scholar 

  • Ryan D, Drysdale AJ, Lafourcade C, Pertwee RG, Platt B (2009) Cannabidiol targets mitochondria to regulate intracellular Ca2+ levels. J Neurosci 29(7):2053–2063

    Article  CAS  PubMed  Google Scholar 

  • Schicho R, Bashashati M, Bawa M, McHugh D, Saur D, Hu HM, Zimmer A, Lutz B, Mackie K, Bradshaw HB, McCafferty DM, Sharkey KA, Storr M (2011) The atypical cannabinoid O-1602 protects against experimental colitis and inhibits neutrophil recruitment. Inflamm Bowel Dis 17(8):1651–1664

    Article  PubMed Central  PubMed  Google Scholar 

  • Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, Burton MA, Goldstein LE, Duong S, Tanzi RE, Moir RD (2010) The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 5(3):e9505

    Article  PubMed Central  PubMed  Google Scholar 

  • Stella N (2009) Endocannabinoid signaling in microglial cells. Neuropharmacology 56(Supplement 1 (0)):244–253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun Y, Alexander SP, Garle MJ, Gibson CL, Hewitt K, Murphy SP, Kendall DA, Bennett AJ (2007) Cannabinoid activation of PPAR alpha; a novel neuroprotective mechanism. Br J Pharmacol 152(5):734–743

    Article  CAS  PubMed  Google Scholar 

  • Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukuchi K (2006) Role of toll-like receptor signalling in Abeta uptake and clearance. Brain 129(Pt 11):3006–3019

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The funding for this project was provided by internal Faculty of Health Sciences sources at The University of Adelaide

Conflict of interest

Scott Smid, Emelie Janefjord, Jesper Mååg and Benjamin Harvey have no conflict of interest in this regard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott D. Smid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janefjord, E., Mååg, J.L.V., Harvey, B.S. et al. Cannabinoid Effects on β Amyloid Fibril and Aggregate Formation, Neuronal and Microglial-Activated Neurotoxicity In Vitro. Cell Mol Neurobiol 34, 31–42 (2014). https://doi.org/10.1007/s10571-013-9984-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-013-9984-x

Keywords

Navigation