Skip to main content

Advertisement

Log in

Retinal Cell Death Induced by TRPV1 Activation Involves NMDA Signaling and Upregulation of Nitric Oxide Synthases

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The activation of the transient receptor potential vanilloid type 1 channel (TRPV1) has been correlated with oxidative and nitrosative stress and cell death in the nervous system. Our previous results indicate that TRPV1 activation in the adult retina can lead to constitutive and inducible nitric oxide synthase-dependent protein nitration and apoptosis. In this report, we have investigated the potential effects of TRPV1 channel activation on nitric oxide synthase (NOS) expression and function, and the putative participation of ionotropic glutamate receptors in retinal TRPV1-induced protein nitration, lipid peroxidation, and DNA fragmentation. Intravitreal injections of the classical TRPV1 agonist capsaicin up-regulated the protein expression of the inducible and endothelial NOS isoforms. Using 4,5-diaminofluorescein diacetate for nitric oxide (NO) imaging, we found that capsaicin also increased the production of NO in retinal blood vessels. Processes and perikarya of TRPV1-expressing neurons in the inner nuclear layer of the retina were found in the vicinity of nNOS-positive neurons, but those two proteins did not colocalize. Retinal explants exposed to capsaicin presented high protein nitration, lipid peroxidation, and cell death, which were observed in the inner nuclear and plexiform layers and in ganglion cells. This effect was partially blocked by AP-5, a NMDA glutamate receptor antagonist, but not by CNQX, an AMPA/kainate receptor antagonist. These data support a potential role for TRPV1 channels in physiopathological retinal processes mediated by NO, which at least in part involve glutamate release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abu El-Asrar AM, Desmet S, Meersschaert A et al (2001) Expression of the inducible isoform of nitric oxide synthase in the retinas of human subjects with diabetes mellitus. Am J Ophthalmol 132:551–556

    Article  CAS  PubMed  Google Scholar 

  • Akerman S, Kaube H, Goadsby PJ (2004) Anandamide acts as a vasodilator of dural blood vessels in vivo by activating TRPV1 receptors. Br J Pharmacol 142:1354–1360

    Article  CAS  PubMed  Google Scholar 

  • Alawi K, Keeble J (2010) The paradoxical role of the transient receptor potential vanilloid 1 receptor in inflammation. Pharmacol Ther 125:181–195

    Article  CAS  PubMed  Google Scholar 

  • Amantini C, Mosca M, Nabissi M et al (2007) Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation. J Neurochem 102:977–990

    Article  CAS  PubMed  Google Scholar 

  • Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34:325–337

    Article  CAS  PubMed  Google Scholar 

  • Aslan M, Cort A, Yucel I (2008) Oxidative and nitrative stress markers in glaucoma. Free Radic Biol Med 45:367–376

    Article  CAS  PubMed  Google Scholar 

  • Bal-Price A, Brown GC (2001) Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci 21:6480–6491

    CAS  PubMed  Google Scholar 

  • Bal-Price A, Matthias A, Brown GC (2002) Stimulation of the NADPH oxidase in activated rat microglia removes nitric oxide but induces peroxynitrite production. J Neurochem 80:73–80

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay A, Chakder S, Rattan S (1997) Regulation of inducible and neuronal nitric oxide synthase gene expression by interferon-gamma and VIP. Am J Physiol 272:C1790–C1797

    CAS  PubMed  Google Scholar 

  • Beal MF (1992) Mechanisms of excitotoxicity in neurologic diseases. FASEB J 6:3338–3344

    CAS  PubMed  Google Scholar 

  • Beckman JS, Beckman TW, Chen J et al (1990) Apparent hydroxyl radical production by peroxynitrite—implications for endothelial injury from nitric-oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    Article  CAS  PubMed  Google Scholar 

  • Bisset GW, Lewis GP (1962) A spectrum of pharmacological activity in some biologically active peptides. Br J Pharmacol Chemother 19:168–182

    CAS  PubMed  Google Scholar 

  • Blute TA, Lee MR, Eldred WD (2000) Direct imaging of NMDA-stimulated nitric oxide production in the retina. Vis Neurosci 17:557–566

    Article  CAS  PubMed  Google Scholar 

  • Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770

    Article  CAS  PubMed  Google Scholar 

  • Brown GC, Cooper CE (1994) Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 356:295–298

    Article  CAS  PubMed  Google Scholar 

  • Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41:242–247

    Article  CAS  PubMed  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  • Chakravarthy U, Stitt AW, McNally J et al (1995) Nitric oxide synthase activity and expression in retinal capillary endothelial cells and pericytes. Curr Eye Res 14:285–294

    Article  CAS  PubMed  Google Scholar 

  • Chu CJ, Huang SM, De Petrocellis L et al (2003) N-Oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia. J Biol Chem 278:13633–13639

    Article  CAS  PubMed  Google Scholar 

  • Corradin SB, Mauel J, Donini SD et al (1993) Inducible nitric oxide synthase activity of cloned murine microglial cells. Glia 7:255–262

    Article  CAS  PubMed  Google Scholar 

  • Dedov VN, Roufogalis BD (2000) Mitochondrial calcium accumulation following activation of vanilloid (VR1) receptors by capsaicin in dorsal root ganglion neurons. Neuroscience 95:183–188

    Article  CAS  PubMed  Google Scholar 

  • del Zoppo GJ (2006) Stroke and neurovascular protection. N Engl J Med 354:553–555

    Article  PubMed  Google Scholar 

  • Du Y, Hirooka K, Miyamoto O et al (2008) Both amacrine and bipolar cells release glutamate in the rat retina after ischemia/reperfusion insult in vitro. Curr Eye Res 33:782–788

    Article  CAS  PubMed  Google Scholar 

  • El-Remessy AB, Khalil IE, Matragoon S et al (2003) Neuroprotective effect of (−)Delta9-tetrahydrocannabinol and cannabidiol in N-methyl-d-aspartate-induced retinal neurotoxicity: involvement of peroxynitrite. Am J Pathol 163:1997–2008

    Article  CAS  PubMed  Google Scholar 

  • Forder JP, Tymianski M (2009) Postsynaptic mechanisms of excitotoxicity: involvement of postsynaptic density proteins, radicals, and oxidant molecules. Neuroscience 158:293–300

    Article  CAS  PubMed  Google Scholar 

  • Garthwaite J (2008) Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 27:2783–2802

    Article  PubMed  Google Scholar 

  • Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336:385–388

    Article  CAS  PubMed  Google Scholar 

  • Gaspar MN, Ribeiro CA, Cunha-Vaz JG et al (2004) Effects of neuropeptides on the sumatriptan-disturbed circulation in the optic nerve head of rabbits. Pharmacology 70:152–159

    Article  CAS  PubMed  Google Scholar 

  • Geller DA, Billiar TR (1998) Molecular biology of nitric oxide synthases. Cancer Metastasis Rev 17:7–23

    Article  CAS  PubMed  Google Scholar 

  • Geppetti P, Trevisani M (2004) Activation and sensitisation of the vanilloid receptor: role in gastrointestinal inflammation and function. Br J Pharmacol 141:1313–1320

    Article  CAS  PubMed  Google Scholar 

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696

    Article  CAS  PubMed  Google Scholar 

  • Haverkamp S, Wassle H (2000) Immunocytochemical analysis of the mouse retina. J Comp Neurol 424:1–23

    Article  CAS  PubMed  Google Scholar 

  • Huang SM, Bisogno T, Trevisani M et al (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci USA 99:8400–8405

    Article  CAS  PubMed  Google Scholar 

  • Ientile R, Picciurro V, Pedale S et al (1996) Nitric oxide enhances amino acid release from immature chick embryo retina. Neurosci Lett 219:79–82

    Article  CAS  PubMed  Google Scholar 

  • Jin YH, Bailey TW, Li BY et al (2004) Purinergic and vanilloid receptor activation releases glutamate from separate cranial afferent terminals in nucleus tractus solitarius. J Neurosci 24:4709–4717

    Article  CAS  PubMed  Google Scholar 

  • Johnson TV, Martin KR (2008) Development and characterization of an adult retinal explant organotypic tissue culture system as an in vitro intraocular stem cell transplantation model. Invest Ophthalmol Vis Sci 49:3503–3512

    Article  PubMed  Google Scholar 

  • Jung JE, Kim GS, Narasimhan P et al (2009) Regulation of Mn-superoxide dismutase activity and neuroprotection by STAT3 in mice after cerebral ischemia. J Neurosci 29:7003–7014

    Article  CAS  PubMed  Google Scholar 

  • Kermer P, Klocker N, Weishaupt JH et al (2001) Transection of the optic nerve in rats: studying neuronal death and survival in vivo. Brain Res Brain Res Protoc 7:255–260

    Article  CAS  PubMed  Google Scholar 

  • Kim SR, Kim SU, Oh U et al (2006) Transient receptor potential vanilloid subtype 1 mediates microglial cell death in vivo and in vitro via Ca2+-mediated mitochondrial damage and cytochrome c release. J Immunol 177:4322–4329

    CAS  PubMed  Google Scholar 

  • Koeberle PD, Ball AK (1999) Nitric oxide synthase inhibition delays axonal degeneration and promotes the survival of axotomized retinal ganglion cells. Exp Neurol 158:366–381

    Article  CAS  PubMed  Google Scholar 

  • Kojima H, Nakatsubo N, Kikuchi K et al (1998) Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal Chem 70:2446–2453

    Article  CAS  PubMed  Google Scholar 

  • Leonelli M, Martins DO, Kihara AH et al (2009) Ontogenetic expression of the vanilloid receptors TRPV1 and TRPV2 in the rat retina. Int J Dev Neurosci 27:709–718

    Article  CAS  PubMed  Google Scholar 

  • Leonelli M, Martins DO, Britto LR (2010) TRPV1 receptors are involved in protein nitration and Muller cell reaction in the acutely axotomized rat retina. Exp Eye Res 91:755–768

    Article  CAS  PubMed  Google Scholar 

  • Leonelli M, Martins DO, Britto LR (2011) TRPV1 receptors modulate retinal development. Int J Dev Neurosci 29:405–413

    Article  CAS  PubMed  Google Scholar 

  • Li DP, Chen SR, Pan HL (2004) VR1 receptor activation induces glutamate release and postsynaptic firing in the paraventricular nucleus. J Neurophysiol 92:1807–1816

    Article  CAS  PubMed  Google Scholar 

  • Lilja J, Lindegren H, Forsby A (2007) Surfactant-induced TRPV1 activity–a novel mechanism for eye irritation? Toxicol Sci 99:174–180

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Neufeld AH (2000) Expression of nitric oxide synthase-2 (NOS-2) in reactive astrocytes of the human glaucomatous optic nerve head. Glia 30:178–186

    Article  CAS  PubMed  Google Scholar 

  • Maccarrone M, Rossi S, Bari M et al (2008) Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum. Nat Neurosci 11:152–159

    Article  CAS  PubMed  Google Scholar 

  • Macho A, Calzado MA, Munoz-Blanco J et al (1999) Selective induction of apoptosis by capsaicin in transformed cells: the role of reactive oxygen species and calcium. Cell Death Differ 6:155–165

    Article  CAS  PubMed  Google Scholar 

  • Marella M, Chabry J (2004) Neurons and astrocytes respond to prion infection by inducing microglia recruitment. J Neurosci 24:620–627

    Article  CAS  PubMed  Google Scholar 

  • Marinelli S, Di Marzo V, Berretta N et al (2003) Presynaptic facilitation of glutamatergic synapses to dopaminergic neurons of the rat substantia nigra by endogenous stimulation of vanilloid receptors. J Neurosci 23:3136–3144

    CAS  PubMed  Google Scholar 

  • Medvedeva YV, Kim MS, Usachev YM (2008) Mechanisms of prolonged presynaptic Ca2+ signaling and glutamate release induced by TRPV1 activation in rat sensory neurons. J Neurosci 28:5295–5311

    Article  CAS  PubMed  Google Scholar 

  • Metea MR, Newman EA (2007) Signalling within the neurovascular unit in the mammalian retina. Exp Physiol 92:635–640

    Article  PubMed  Google Scholar 

  • Morgans CW, Zhang J, Jeffrey BG et al (2009) TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells. Proc Natl Acad Sci USA 106:19174–19178

    Article  CAS  PubMed  Google Scholar 

  • Mozaffarieh M, Grieshaber MC, Flammer J (2008) Oxygen and blood flow: players in the pathogenesis of glaucoma. Mol Vis 14:224–233

    CAS  PubMed  Google Scholar 

  • Murphy TH, Miyamoto M, Sastre A et al (1989) Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2:1547–1558

    Article  CAS  PubMed  Google Scholar 

  • Musella A, De Chiara V, Rossi S et al (2009) TRPV1 channels facilitate glutamate transmission in the striatum. Mol Cell Neurosci 40:89–97

    Article  CAS  PubMed  Google Scholar 

  • Neufeld AH, Sawada A, Becker B (1999) Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. Proc Natl Acad Sci USA 96:9944–9948

    Article  CAS  PubMed  Google Scholar 

  • Nguyen D, Alavi MV, Kim KY et al (2011) A new vicious cycle involving glutamate excitotoxicity, oxidative stress and mitochondrial dynamics. Cell Death Dis 2:e240

    Article  CAS  PubMed  Google Scholar 

  • Nucci C, Gasperi V, Tartaglione R et al (2007) Involvement of the endocannabinoid system in retinal damage after high intraocular pressure-induced ischemia in rats. Invest Ophthalmol Vis Sci 48:2997–3004

    Article  PubMed  Google Scholar 

  • Palazzo E, de Novellis V, Marabese I et al (2002) Interaction between vanilloid and glutamate receptors in the central modulation of nociception. Eur J Pharmacol 439:69–75

    Article  CAS  PubMed  Google Scholar 

  • Poblete IM, Orliac ML, Briones R et al (2005) Anandamide elicits an acute release of nitric oxide through endothelial TRPV1 receptor activation in the rat arterial mesenteric bed. J Physiol 568:539–551

    Article  CAS  PubMed  Google Scholar 

  • Premkumar LS, Ahern GP (2000) Induction of vanilloid receptor channel activity by protein kinase C. Nature 408:985–990

    Article  CAS  PubMed  Google Scholar 

  • Qiao S, Li W, Tsubouchi R et al (2005) Involvement of peroxynitrite in capsaicin-induced apoptosis of C6 glioma cells. Neurosci Res 51:175–183

    Article  CAS  PubMed  Google Scholar 

  • Rego AC, Oliveira CR (2003) Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 28:1563–1574

    Article  CAS  PubMed  Google Scholar 

  • Ritter S, Dinh TT (1990) Capsaicin-induced neuronal degeneration in the brain and retina of preweanling rats. J Comp Neurol 296:447–461

    Article  CAS  PubMed  Google Scholar 

  • Ryskamp DA, Witkovsky P, Barabas P et al (2012) The polymodal ion channel transient receptor potential vanilloid 4 modulates calcium flux, spiking rate, and apoptosis of mouse retinal ganglion cells. J Neurosci 31:7089–7101

    Article  Google Scholar 

  • Sappington RM, Calkins DJ (2008) Contribution of TRPV1 to microglia-derived IL-6 and NFkappaB translocation with elevated hydrostatic pressure. Invest Ophthalmol Vis Sci 49:3004–3017

    Article  PubMed  Google Scholar 

  • Sappington RM, Sidorova T, Long DJ et al (2009) TRPV1: contribution to retinal ganglion cell apoptosis and increased intracellular Ca2+ with exposure to hydrostatic pressure. Invest Ophthalmol Vis Sci 50:717–728

    Article  PubMed  Google Scholar 

  • Schilling T, Eder C (2009) Importance of the non-selective cation channel TRPV1 for microglial reactive oxygen species generation. J Neuroimmunol 216(1–2):118–121

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Heimel JA, Kamermans M et al (2009) A transient receptor potential-like channel mediates synaptic transmission in rod bipolar cells. J Neurosci 29:6088–6093

    Article  CAS  PubMed  Google Scholar 

  • Shirakawa H, Yamaoka T, Sanpei K et al (2008) TRPV1 stimulation triggers apoptotic cell death of rat cortical neurons. Biochem Biophys Res Commun 377:1211–1215

    Article  CAS  PubMed  Google Scholar 

  • Sikand P, Premkumar LS (2007) Potentiation of glutamatergic synaptic transmission by protein kinase C-mediated sensitization of TRPV1 at the first sensory synapse. J Physiol 581:631–647

    Article  PubMed  Google Scholar 

  • Smart D, Gunthorpe MJ, Jerman JC et al (2000) The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br J Pharmacol 129:227–230

    Article  CAS  PubMed  Google Scholar 

  • Starowicz K, Maione S, Cristino L et al (2007) Tonic endovanilloid facilitation of glutamate release in brainstem descending antinociceptive pathways. J Neurosci 27:13739–13749

    Article  CAS  PubMed  Google Scholar 

  • Szallasi A, Blumberg PM (1990) Resiniferatoxin and its analogs provide novel insights into the pharmacology of the vanilloid (capsaicin) receptor. Life Sci 47:1399–1408

    Article  CAS  PubMed  Google Scholar 

  • Szolcsanyi J (2004) Forty years in capsaicin research for sensory pharmacology and physiology. Neuropeptides 38:377–384

    Article  CAS  PubMed  Google Scholar 

  • Thomas KC, Sabnis AS, Johansen ME et al (2007) Transient receptor potential vanilloid 1 agonists cause endoplasmic reticulum stress and cell death in human lung cells. J Pharmacol Exp Ther 321:830–838

    Article  CAS  PubMed  Google Scholar 

  • Thomas KC, Roberts JK, Deering-Rice CE et al (2012) Contributions of TRPV1, endovanilloids, and endoplasmic reticulum stress in lung cell death in vitro and lung injury. Am J Physiol Lung Cell Mol Physiol 302:L111–L119

    Article  CAS  PubMed  Google Scholar 

  • Thoreson WB, Witkovsky P (1999) Glutamate receptors and circuits in the vertebrate retina. Prog Retin Eye Res 18:765–810

    Article  CAS  PubMed  Google Scholar 

  • Tominaga M, Caterina MJ (2004) Thermosensation and pain. J Neurobiol 61:3–12

    Article  PubMed  Google Scholar 

  • Toth A, Boczan J, Kedei N et al (2005) Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Brain Res Mol Brain Res 135:162–168

    Article  CAS  PubMed  Google Scholar 

  • Vellani V, Mapplebeck S, Moriondo A et al (2001) Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J Physiol 534:813–825

    Article  CAS  PubMed  Google Scholar 

  • Venturini CM, Knowles RG, Palmer RM et al (1991) Synthesis of nitric oxide in the bovine retina. Biochem Biophys Res Commun 180:920–925

    Article  CAS  PubMed  Google Scholar 

  • Vidal L, Diaz F, Villena A et al (2006) Nitric oxide synthase in retina and optic nerve head of rat with increased intraocular pressure and effect of timolol. Brain Res Bull 70:406–413

    Article  CAS  PubMed  Google Scholar 

  • Vriens J, Appendino G, Nilius B (2009) Pharmacology of vanilloid transient receptor potential cation channels. Mol Pharmacol 75:1262–1279

    Article  CAS  PubMed  Google Scholar 

  • Westlund KN, Kochukov MY, Lu Y et al (2010) Impact of central and peripheral TRPV1 and ROS levels on proinflammatory mediators and nociceptive behavior. Mol Pain 6:46

    Article  PubMed  Google Scholar 

  • Ye XD, Laties AM, Stone RA (1990) Peptidergic innervation of the retinal vasculature and optic nerve head. Invest Ophthalmol Vis Sci 31:1731–1737

    CAS  PubMed  Google Scholar 

  • Zeevalk GD, Nicklas WJ (1994) Nitric oxide in retina: relation to excitatory amino acids and excitotoxicity. Exp Eye Res 58:343–350

    Article  CAS  PubMed  Google Scholar 

  • Zeevalk GD, Schoepp D, Nicklas WJ (1995) Excitotoxicity at both NMDA and non-NMDA glutamate receptors is antagonized by aurintricarboxylic acid: evidence for differing mechanisms of action. J Neurochem 64:1749–1758

    Article  CAS  PubMed  Google Scholar 

  • Zschenderlein C, Gebhardt C, von Bohlen Und Halbach O et al (2011) Capsaicin-induced changes in LTP in the lateral amygdala are mediated by TRPV1. PLoS One 6:e16116

    Article  CAS  PubMed  Google Scholar 

  • Zygmunt PM, Petersson J, Andersson DA et al (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Adilson S. Alves for technical assistance. Thanks are also due to Maria Fernanda R. Graciano (University of São Paulo) for critically reading the manuscript. Grant sponsors: FAPESP, CNPq (Brazil), and University of São Paulo (Brazil). M.L. and D.O.M. are the recipients of fellowships from FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Leonelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonelli, M., Martins, D.O. & Britto, L.R.G. Retinal Cell Death Induced by TRPV1 Activation Involves NMDA Signaling and Upregulation of Nitric Oxide Synthases. Cell Mol Neurobiol 33, 379–392 (2013). https://doi.org/10.1007/s10571-012-9904-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-012-9904-5

Keywords

Navigation