Skip to main content
Log in

Decreased Sensory Responses in Osteocalcin Null Mutant Mice Imply Neuropeptide Function

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Osteocalcin, the most abundant member of the family of extracellular mineral binding gamma-carboxyglutamic acid proteins is synthesized primarily by osteoblasts. Its affinity for calcium ions is believed to limit bone mineralization. Several of the numerous hormones that regulate synthesis of osteocalcin, including glucocorticoids and parathyroid hormone, are also affected by stressful stimuli that require energy for an appropriate response. Based on our observations of OC responding to stressful sensory stimuli, the expression of OC in mouse and rat sensory ganglia was confirmed. It was thus hypothesized that the behavioral responses of the OC knockout mouse to stressful sensory stimuli would be abnormal. To test this hypothesis, behaviors related to sensory aspects of the stress response were quantified in nine groups of mice, aged 4–14 months, comparing knockout with their wild-type counterparts in six distinctly different behavioral tests. Resulting data indicated the following statistically significant differences: open field grooming frequency following saline injection, wild-type > knockout; paw stimulation with Von Frey fibers, knockout < wild-type; balance beam, knockout mobility < WT; thermal sensitivity to heat (tail flick), knockout < wild-type; and cold, knockout < wild-type. Insignificant differences in hanging wire test indicate that these responses are unrelated to reduced muscle strength. Each of these disparate environmental stimuli provided data indicating alterations of responses in knockout mice that suggest participation of osteocalcin in transmission of information about those sensory stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Advokat C (1989) Tolerance to the antinociceptive effect of morphine in spinally transected rats. Behav Neurosci 103(5):1091–1098

    Article  PubMed  CAS  Google Scholar 

  • Bartness TJ, Bamshad M (1998) Innervation of mammalian white adipose tissue: implications for the regulation of total body fat. Am J Physiol 275(5 Pt 2):R1399–R1411

    PubMed  CAS  Google Scholar 

  • Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288(5464):306–313

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN (1999) Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res 835(1):18–26

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN, Paylor R (1997) A proposed test battery and constellations of specific behavioral paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. Horm Behav 31(3):197–211

    Article  PubMed  CAS  Google Scholar 

  • Desbois C, Hogue DA, Karsenty G (1994) The mouse osteocalcin gene cluster contains three genes with two separate spatial and temporal patterns of expression. J Biol Chem 269(2):1183–1190

    PubMed  CAS  Google Scholar 

  • Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, Karsenty G (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382(6590):448–452

    Article  PubMed  CAS  Google Scholar 

  • Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 105(13):5266–5270

    Article  PubMed  CAS  Google Scholar 

  • Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142(2):296–308. doi:10.1016/j.cell.2010.06.003

    Article  PubMed  CAS  Google Scholar 

  • Fujita T, Ohgitani S, Nomura M (1999) Fall of blood ionized calcium on watching a provocative TV program and its prevention by active absorbable algal calcium (AAA Ca). J Bone Miner Metab 17(2):131–136

    Article  PubMed  CAS  Google Scholar 

  • Gomez CM, Maselli R, Gundeck JE, Chao M, Day JW, Tamamizu S, Lasalde JA, McNamee M, Wollmann RL (1997) Slow-channel transgenic mice: a model of postsynaptic organellar degeneration at the neuromuscular junction. J Neurosci 17(11):4170–4179

    PubMed  CAS  Google Scholar 

  • Gundberg CM, Clough ME, Carpenter TO (1992) Development and validation of a radioimmunoassay for mouse osteocalcin: paradoxical response in the Hyp mouse. Endocrinology 130(4):1909–1915

    Article  PubMed  CAS  Google Scholar 

  • Hauschka PV, Lian JB, Cole DE, Gundberg CM (1989) Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 69(3):990–1047

    PubMed  CAS  Google Scholar 

  • Hotchkiss CE, Brommage R, Du M, Jerome CP (1998) The anesthetic isoflurane decreases ionized calcium and increases parathyroid hormone and osteocalcin in cynomolgus monkeys. Bone 23(5):479–484

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa H, Sugimoto T (2002) The difference of osteocalcin-immunoreactive neurons in the rat dorsal root and trigeminal ganglia: co-expression with nociceptive transducers and central projection. Brain Res 958(2):459–462

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa H, Itota T, Torii Y, Inoue K, Sugimoto T (1999a) Osteocalcin-immunoreactive primary sensory neurons in the rat spinal and trigeminal nervous systems. Brain Res 838(1–2):205–209

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa H, Morgan JI, Sugimoto T (1999b) Peptide 19 in the dorsal root ganglion and the mesencephalic trigeminal tract nucleus of the adult rat. Brain Res 821(1):231–235

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa H, Hidaka H, Sugimoto T (2000) Neurocalcin-immunoreactive primary sensory neurons in the trigeminal ganglion provide myelinated innervation to the tooth pulp and periodontal ligament. Brain Res 864(1):152–156

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa H, Jin HW, Fujita M, Nagaoka N, Sugimoto T (2005) Osteocalcin-immunoreactive neurons in the vagal and glossopharyngeal sensory ganglia of the rat. Brain Res 1031(1):129–133

    Article  PubMed  CAS  Google Scholar 

  • Kalueff AV, Tuohimaa P (2005) The Suok (“ropewalking”) murine test of anxiety. Brain Res Brain Res Protoc 14(2):87–99

    Article  PubMed  Google Scholar 

  • Kvetnansky R, Mikulaj L (1970) Adrenal and urinary catecholamines in rats during adaptation to repeated immobilization stress. Endocrinology 87(4):738–743

    Article  PubMed  CAS  Google Scholar 

  • Ledent C, Valverde O, Cossu G, Petitet F, Aubert JF, Beslot F, Bohme GA, Imperato A, Pedrazzini T, Roques BP, Vassart G, Fratta W, Parmentier M (1999) Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 283(5400):401–404

    Article  PubMed  CAS  Google Scholar 

  • Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130(3):456–469

    Article  PubMed  CAS  Google Scholar 

  • Napal J, Amado JA, Riancho JA, Olmos JM, Gonzalez-Macias J (1993) Stress decreases the serum level of osteocalcin. Bone Miner 21(2):113–118

    Article  PubMed  CAS  Google Scholar 

  • Osaka T, Kobayashi A, Namba Y, Ezaki O, Inoue S, Kimura S, Lee TH (1998) Temperature- and capsaicin-sensitive nerve fibers in brown adipose tissue attenuate thermogenesis in the rat. Pflugers Arch 437(1):36–42

    Article  PubMed  CAS  Google Scholar 

  • Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE, Hermo L, Suarez S, Roth BL, Ducy P, Karsenty G (2011) Endocrine regulation of male fertility by the skeleton. Cell 144(5):796–809. doi:10.1016/j.cell.2011.02.004

    Article  PubMed  CAS  Google Scholar 

  • Patapoutian A, Peier AM, Story GM, Viswanath V (2003) ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 4(7):529–539. doi:10.1038/nrn1141

    Article  PubMed  CAS  Google Scholar 

  • Patterson-Allen P, Brautigam CE, Grindeland RE, Asling CW, Callahan PX (1982) A specific radioimmunoassay for osteocalcin with advantageous species crossreactivity. Anal Biochem 120(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Patterson-Buckendahl PE, Grindeland RE, Shakes DC, Morey-Holton ER, Cann CE (1988) Circulating osteocalcin in rats is inversely responsive to changes in corticosterone. Am J Physiol 254(5 Pt 2):R828–R833

    PubMed  CAS  Google Scholar 

  • Patterson-Buckendahl P, Kvetnansky R, Fukuhara K, Cizza G, Cann C (1995) Regulation of plasma osteocalcin by corticosterone and norepinephrine during restraint stress. Bone 17(5):467–472

    Article  PubMed  CAS  Google Scholar 

  • Patterson-Buckendahl P, Cann CE, Kvetnansky R (1996) Osteocalcin Response to stress—is it a stress hormone? In: Stress: molecular genetic and neurobiological advances. Gordon and Breach Science, New York, pp 579–589

  • Patterson-Buckendahl P, Rusnak M, Fukuhara K, Kvetnansky R (2001) Repeated immobilization stress reduces rat vertebral bone growth and osteocalcin. Am J Physiol Regul Integr Comp Physiol 280(1):R79–R86

    PubMed  CAS  Google Scholar 

  • Patterson-Buckendahl P, Kubovcakova L, Krizanova O, Pohorecky LA, Kvetnansky R (2005) Ethanol consumption increases rat stress hormones and adrenomedullary gene expression. Alcohol 37(3):157–166

    Article  PubMed  CAS  Google Scholar 

  • Patterson-Buckendahl P, Pohorecky LA, Kvetnansky R (2007) Differing effects of acute and chronic stressors on plasma osteocalcin and leptin in rats. Stress 10(2):163–172

    Article  PubMed  CAS  Google Scholar 

  • Puchacz E, Lian JB, Stein GS, Wozney J, Huebner K, Croce C (1989) Chromosomal localization of the human osteocalcin gene. Endocrinology 124(5):2648–2650

    Article  PubMed  CAS  Google Scholar 

  • Rafael JA, Nitta Y, Peters J, Davies KE (2000) Testing of SHIRPA, a mouse phenotypic assessment protocol, on Dmd(mdx) and Dmd(mdx3cv) dystrophin-deficient mice. Mamm Genome 11(9):725–728

    Article  PubMed  CAS  Google Scholar 

  • Schwartz ES, Christianson JA, Chen X, La JH, Davis BM, Albers KM, Gebhart GF (2011) Synergistic role of TRPV1 and TRPA1 in pancreatic pain and inflammation. Gastroenterology 140 (4):1283–1291 e1281–1282. doi:10.1053/j.gastro.2010.12.033

    Google Scholar 

  • Sienkiewicz W (2010) Sources of the porcine testis innervation. Andrologia 42(6):395–403. doi:10.1111/j.1439-0272.2010.01116.x

    Article  PubMed  CAS  Google Scholar 

  • Spruijt BM, van Hooff JA, Gispen WH (1992) Ethology and neurobiology of grooming behavior. Physiol Rev 72(3):825–852

    PubMed  CAS  Google Scholar 

  • Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101(16):6062–6067. doi:10.1073/pnas.0400782101

    Article  PubMed  CAS  Google Scholar 

  • van Erp AM, Kruk MR, Meelis W, Willekens-Bramer DC (1994) Effect of environmental stressors on time course, variability and form of self-grooming in the rat: handling, social contact, defeat, novelty, restraint and fur moistening. Behav Brain Res 65(1):47–55

    Article  PubMed  Google Scholar 

  • van Putten M, de Winter C, van Roon-Mom W, van Ommen GJ, t Hoen PA, Aartsma-Rus A (2010) A 3 months mild functional test regime does not affect disease parameters in young mdx mice. Neuromuscul Disord 20(4):273–280. doi:10.1016/j.nmd.2010.02.004

    Article  PubMed  Google Scholar 

  • Wang S, Albers KM (2009) Behavioral and cellular level changes in the aging somatosensory system. Ann N Y Acad Sci 1170:745–749. doi:10.1111/j.1749-6632.2009.04011.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dale Buckendahl for fabricating the open field arena and von Frey testing chambers. We are grateful for the capable assistance of Nina Vaid, Young Kwang Kim and Teja Mehadashwar in behavioral observations. Work was supported by funds from the National Science Foundation, SGER Grant #0343515, the National Institutes of Health, National Institute for Alcoholism and Alcohol Abuse: R21 AA 12705-01, and R21 AA 14399-01A2 to PP-B, the New Jersey Commission on Spinal Cord Research: 10-3094-SCR-E-0, funds from the Aresty Foundation for Undergraduate Research (CF, AS, MS, AS, SP, DP, and SY), and from the Rutgers University Center of Alcohol Studies (LAP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Patterson-Buckendahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patterson-Buckendahl, P., Sowinska, A., Yee, S. et al. Decreased Sensory Responses in Osteocalcin Null Mutant Mice Imply Neuropeptide Function. Cell Mol Neurobiol 32, 879–889 (2012). https://doi.org/10.1007/s10571-012-9810-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-012-9810-x

Keywords

Navigation