Skip to main content

Advertisement

Log in

Effect of Oxytocin on Neuroblastoma Cell Viability and Growth

  • Short Communication
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Oxytocin, released in response to different physiological stimuli, could play a key role in reducing stress reaction. It was suggested that it has protective effect against inflammation and consequences of oxidative stress. Mechanisms how oxytocin effects mediated in the brain tissue are unclear. In this study, oxytocin effect on cell growth and neuronal viability was examined. Human neuroblastoma (SH-SY5Y and SK-N-SH) and glioblastoma (U87MG) cells were exposed to different concentrations of oxytocin for 12–96 h. Potential protective effect of oxytocin treatment was investigated after exposing cells to oxidative stress using hydrogen peroxide (50 mM, 2 h) or 6-hydroxydopamine (25 μM, 24 h). Cell proliferation was measured by cell counting and cell viability was examined by MTT assay. Protein expression of selected neurotrophic factors was measured as an additional parameter. Oxytocin (1 μM) significantly increased cell number in all three cell types. Viability of SH-SY5Y cells was increased in the presence of oxytocin without significant effect of dose (0.01–1 μM). Cell death induced by hydrogen peroxide was not prevented by incubation with oxytocin. Oxytocin pretreatment blunted neurotoxin 6-OHDA reduction of cell viability in SH-SY5Y cells. Oxytocin (1 μM, 12 h) elevated amount of total proteins without increasing levels of brain-derived neurotrophic factor and neurotrophic growth factor. In conclusion, oxytocin increases growth and viability of neuroblastoma and glioblastoma cells without activation of neurotrophic factors. Oxytocin does not have protective effect in oxidative stress; however, it might be important for neuroprotection to dopaminergic neurons. Its proliferative effect might be important in native cell life, euplastic processes, and tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Alderson RF, Alterman AL, Barde YA, Lindsay RM (1990) Brain-derived neurotrophic factor increases survival and differentiated functions of rat septal cholinergic neurons in culture. Neuron 5(3):297–306

    Article  PubMed  CAS  Google Scholar 

  • Alizadeh AM, Faghihi M, Sadeghipour HR, Mohammadghasemi F, Imani A, Houshmand F, Khori V (2010) Oxytocin protects rat heart against ischemia-reperfusion injury via pathway involving mitochondrial ATP-dependent potassium channel. Peptides 31(7):1341–1345

    Article  PubMed  CAS  Google Scholar 

  • Cassoni P, Sapino A, Stella A, Fortunati N, Bussolati G (1998) Presence and significance of oxytocin receptors in human neuroblastomas and glial tumors. Int J Cancer 77(5):695–700

    Article  PubMed  CAS  Google Scholar 

  • Cassoni P, Sapino A, Marrocco T, Chini B, Bussolati G (2004) Oxytocin and oxytocin receptors in cancer cells and proliferation. J Neuroendocrinol 16(4):362–364

    Article  PubMed  CAS  Google Scholar 

  • Cassoni P, Marrocco T, Bussolati B, Allia E, Munaron L, Sapino A, Bussolati G (2006) Oxytocin induces proliferation and migration in immortalized human dermal microvascular endothelial cells and human breast tumor-derived endothelial cells. Mol Cancer Res 4(6):351–359

    Article  PubMed  CAS  Google Scholar 

  • Cattaneo MG, Chini B, Vicentini LM (2008) Oxytocin stimulates migration and invasion in human endothelial cells. Br J Pharmacol 153(4):728–736

    Article  PubMed  CAS  Google Scholar 

  • Croce N, Dinallo V, Ricci V, Federici G, Caltagirone C, Bernardini S, Angelucci F (2011) Neuroprotective effect of neuropeptide Y against beta-amyloid 25–35 toxicity in SH-SY5Y neuroblastoma cells is associated with increased neurotrophin production. Neurodegener Dis 8(5):300–309

    Article  PubMed  CAS  Google Scholar 

  • Elabd C, Basillais A, Beaupied H, Breuil V, Wagner N, Scheideler M, Zaragosi LE, Massiéra F, Lemichez E, Trajanoski Z, Carle G, Euller-Ziegler L, Ailhaud G, Benhamou CL, Dani C, Amri EZ (2008) Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis. Stem Cells 26(9):2399–2407

    Article  PubMed  CAS  Google Scholar 

  • Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation. Physiol Rev 81(2):629–683

    PubMed  CAS  Google Scholar 

  • Gravina FS, Jobling P, Kerr KP, de Oliveira RB, Parkington HC, van Helden DF (2011) Oxytocin depolarizes mitochondria in isolated myometrial cells. Exp Physiol 96(9):949–956

    PubMed  CAS  Google Scholar 

  • Işeri SO, Gedik IE, Erzik C, Uslu B, Arbak S, Gedik N, Yeğen BC (2008) Oxytocin ameliorates skin damage and oxidant gastric injury in rats with thermal trauma. Burns 34(3):361–369

    Article  PubMed  Google Scholar 

  • Leuner B, Caponiti JM, Gould E (2011) Oxytocin stimulates adult neurogenesis even under conditions of stress and elevated glucocorticoids. Hippocampus. doi:10.1002/hipo.20947

  • Liang Z, Shi F, Wang Y, Lu L, Zhang Z, Wang X, Wang X (2011) Neuroprotective effects of tenuigenin in a SH-SY5Y cell model with 6-OHDA-induced injury. Neurosci Lett 497(2):104–109

    Article  PubMed  CAS  Google Scholar 

  • Luppi P, Levi-Montalcini R, Bracci-Laudiero L, Bertolini A, Arletti R, Tavernari D, Vigneti E, Aloe L (1993) NGF is released into plasma during human pregnancy: An oxytocin-mediated response? Neuroreport 4(8):1063–1065

    Article  PubMed  CAS  Google Scholar 

  • Macciò A, Madeddu C, Chessa P, Panzone F, Lissoni P, Mantovani G (2010) Oxytocin both increases proliferative response of peripheral blood lymphomonocytes to phytohemagglutinin and reverses immunosuppressive estrogen activity. In Vivo 24(2):157–163

    PubMed  Google Scholar 

  • Moosmann B, Behl C (2002) Secretory peptide hormones are biochemical antioxidants structure–activity relationship. Mol Pharmacol 61(2):260–268

    Article  PubMed  CAS  Google Scholar 

  • Petersson M (2008) Opposite effects of oxytocin on proliferation of osteosarcoma cell lines. Regul Pept 150(1–3):50–54

    Article  PubMed  CAS  Google Scholar 

  • Petersson M, Lagumdzija A, Stark A, Bucht E (2002) Oxytocin stimulates proliferation of human osteoblast-like cells. Peptides 23(6):1121–1126

    Article  PubMed  CAS  Google Scholar 

  • Satoh T, Isobe H, Ayukawa K, Sakai H, Nawata H (1996) The effects of pravastatin, an HMG-CoA reductase inhibitor, on cell viability and DNA production of rat hepatocytes. Life Sci 59(14):1103–1108

    Article  PubMed  CAS  Google Scholar 

  • Shi XR, Hong ZY, Liu HR, Zhang YC, Zhu YZ (2011) Neuroprotective effects of SCM198 on 6-hydroxydopamine-induced behavioral deficit in rats and cytotoxicity in neuronal SH-SY5Y cells. Neurochem Int 58(8):851–860

    Article  PubMed  CAS  Google Scholar 

  • Sonnenfeld KH, Ishii DN (1982) Nerve growth factor effects and receptors in cultured human neuroblastoma cell lines. J Neurosci Res 8(2–3):375–391

    Article  PubMed  CAS  Google Scholar 

  • Soto-Otero R, Méndez-Alvarez E, Hermida-Ameijeiras A, Muñoz-Patiño AM, Labandeira-Garcia JL (2000) Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson’s disease. J Neurochem 74(4):1605–1612

    Article  PubMed  CAS  Google Scholar 

  • Szeto A, Nation DA, Mendez AJ, Dominguez-Bendala J, Brooks LG, Schneiderman N, McCabe PM (2008) Oxytocin attenuates NADPH-dependent superoxide activity and IL-6 secretion in macrophages and vascular cells. Am J Physiol Endocrinol Metab 295(6):E1495–E1501

    Article  PubMed  CAS  Google Scholar 

  • Tahara A, Tsukada J, Tomura Y, Yatsu T, Shibasaki M (2011) Vasopressin induces human mesangial cell growth via induction of vascular endothelial growth factor secretion. Neuropeptides 45(2):105–111

    Article  PubMed  CAS  Google Scholar 

  • Tamma R, Colaianni G, Zhu LL, DiBenedetto A, Greco G, Montemurro G, Patano N, Strippoli M, Vergari R, Mancini L, Colucci S, Grano M, Faccio R, Liu X, Li J, Usmani S, Bachar M, Bab I, Nishimori K, Young LJ, Buettner C, Iqbal J, Sun L, Zaidi M, Zallone A (2009) Oxytocin is an anabolic bone hormone. Proc Natl Acad Sci USA 106(17):7149–7154

    Article  PubMed  CAS  Google Scholar 

  • Uvnäs-Moberg K, Alster P, Petersson M, Sohlström A, Björkstrand E (1998) Postnatal oxytocin injections cause sustained weight gain and increased nociceptive thresholds in male and female rats. Pediatr Res 43(3):344–348

    Article  PubMed  Google Scholar 

  • Zhou AW, Li WX, Guo J, Du YC (1997) Facilitation of AVP(4-8) on gene expression of BDNF and NGF in rat brain. Peptides 18(8):1179–1187

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the project 2/0094/09 of the Grant Agency of Ministry of Education and Slovak Academy of Sciences (VEGA), by the Slovak Research and Development Agency project APVV-0253-10 and VVCE-0064-07.

Conflict of interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Bakos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakos, J., Strbak, V., Ratulovska, N. et al. Effect of Oxytocin on Neuroblastoma Cell Viability and Growth. Cell Mol Neurobiol 32, 891–896 (2012). https://doi.org/10.1007/s10571-012-9799-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-012-9799-1

Keywords

Navigation