Skip to main content

Advertisement

Log in

Time Course of Postnatal Distribution of Doublecortin Immunoreactive Developing/Maturing Neurons in the Somatosensory Cortex and Hippocampal CA1 Region of C57BL/6 Mice

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In this study, we observed neuroblast differentiation in the somatosensory cortex (SSC) and hippocampal CA1 region (CA1), which is vulnerable to oxidative stress, of the mouse at various early postnatal days (P) 1, 7, 14, and 21 using doublecortin (DCX, a marker for neuroblasts). Cresyl violet and NeuN (Neuronal Nuclei) staining showed development of layers as well as neurons in the SSC and CA1. At P1, DCX-positive neuroblasts expressed strong DCX immunoreactivity in both the SSC and CA1. Thereafter, DCX immunoreactivity was decreased with time. At P7, many DCX-immunoreactive neuroblasts were well detected in the SSC and CA1. At P14, some DCX-positive neuroblasts were found in the SSC and CA1: The immunoreactivity was weak. At P21, DCX immunoreactivity was hardly found in cells in the SSC and CA1. These results suggest that DCX-positive neuroblasts were significantly decreased in the mouse SSC and CA1 from P14.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altman J (1975) Postnatal development of the cerebellar cortex in the rat. IV. Spatial organization of bipolar cells, parallel fibers and glial palisades. J Comp Neurol 163:427–447

    Article  PubMed  CAS  Google Scholar 

  • Aoki H, Kimoto K, Hori N, Hoshi N, Yamamoto T, Onozuka M (2010) Molarless condition suppresses proliferation but not differentiation rates into neurons in the rat dentate gyrus. Neurosci Lett 469:44–48

    Article  PubMed  CAS  Google Scholar 

  • Bayer SA, Altman J, Russo RJ, Dai XF, Simmons JA (1991) Cell migration in the rat embryonic neocortex. J Comp Neurol 307:499–516

    Article  PubMed  CAS  Google Scholar 

  • Carlén M, Cassidy RM, Brismar H, Smith GA, Enquist LW, Frisén J (2002) Functional integration of adult-born neurons. Curr Biol 12:606–608

    Article  PubMed  Google Scholar 

  • Caviness VS Jr (1973) Time of neuron origin in the hippocampus and dentate gyrus of normal and reeler mutant mice: an autoradiographic analysis. J Comp Neurol 151:113–120

    Article  PubMed  Google Scholar 

  • Corbo JC, Deuel TA, Long JM, LaPorte P, Tsai E, Wynshaw-Boris A, Walsh CA (2002) Doublecortin is required in mice for lamination of the hippocampus but not the neocortex. J Neurosci 22:7548–7557

    PubMed  CAS  Google Scholar 

  • Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn HG, Aigner L (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21:1–14

    Article  PubMed  Google Scholar 

  • Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  PubMed  CAS  Google Scholar 

  • Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, Vinet MC, Friocourt G, McDonnell N, Reiner O, Kahn A, McConnell SK, Berwald-Netter Y, Denoulet P, Chelly J (1999) Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23:247–256

    Article  PubMed  CAS  Google Scholar 

  • Gage FH, Kempermann G, Palmer TD, Peterson DA, Ray J (1998) Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 36:249–266

    Article  PubMed  CAS  Google Scholar 

  • Gleeson JG, Lin PT, Flanagan LA, Walsh CA (1999a) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23:257–271

    Article  PubMed  CAS  Google Scholar 

  • Gleeson JG, Minnerath SR, Fox JW, Allen KM, Luo RF, Hong SE, Berg MJ, Kuzniecky R, Reitnauer PJ, Borgatti R, Mira AP, Guerrini R, Holmes GL, Rooney CM, Berkovic S, Scheffer I, Cooper EC, Ricci S, Cusmai R, Crawford TO, Leroy R, Andermann E, Wheless JW, Dobyns WB, Elizabeth Ross M, Walsh CA (1999b) Characterization of mutations in the gene doublecortin in patients with double cortex syndrome. Ann Neurol 45:146–153

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Climent MA, Castillo-Gómez E, Varea E, Guirado R, Blasco-Ibáñez JM, Crespo C, Martínez-Guijarro FJ, Nácher J (2008) A population of prenatally generated cells in the rat paleocortex maintains an immature neuronal phenotype into adulthood. Cereb Cortex 18:2229–2240

    Article  PubMed  Google Scholar 

  • He WB, Zhang JL, Hu JF, Zhang Y, Machida T, Chen NH (2008) Effects of glucocorticoids on age-related impairments of hippocampal structure and function in mice. Cell Mol Neurobiol 28:277–291

    Article  PubMed  CAS  Google Scholar 

  • Hisaoka T, Nakamura Y, Senba E, Morikawa Y (2010) The forkhead transcription factors, Foxp1 and Foxp2, identify different subpopulations of projection neurons in the mouse cerebral cortex. Neuroscience 166:551–563

    Article  PubMed  CAS  Google Scholar 

  • Hwang IK, Yoo KY, Li H, Park OK, Lee CH, Choi JH, Jeong YG, Lee YL, Kim YM, Kwon YG, Won MH (2009) Indole-3-propionic acid attenuates neuronal damage and oxidative stress in the ischemic hippocampus. J Neurosci Res 87:2126–2137

    Article  PubMed  CAS  Google Scholar 

  • Igaz LM, Winograd M, Cammarota M, Izquierdo LA, Alonso M, Izquierdo I, Medina JH (2006) Early activation of extracellular signal-regulated kinase signaling pathway in the hippocampus is required for short-term memory formation of a fear-motivated learning. Cell Mol Neurobiol 26:989–1002

    Article  PubMed  CAS  Google Scholar 

  • Jin K, Mao XO, Greenberg DA (2004) Proteomic analysis of neuronal hypoxia in vitro. Neurochem Res 29:1123–1128

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Jung J, Lee HJ, Kim JC, Wang H, Kim SH, Shin T, Moon C (2009) Differences in immunoreactivities of Ki-67 and doublecortin in the adult hippocampus in three strains of mice. Acta Histochem 111:150–156

    Article  PubMed  CAS  Google Scholar 

  • Kim SK, Hwang IK, Yoo KY, Yoo DY, Bae E, Lee CH, Choi JH, Choi JW, Seong JK, Yoon YS, Won MH (2010) Pregnancy inhibits cell proliferation and neuroblast differentiation without neuronal damage in the hippocampal dentate gyrus in C57BL/6N mice. Brain Res 1315:25–32

    Article  PubMed  CAS  Google Scholar 

  • Kimoto H, Eto R, Abe M, Kato H, Araki T (2009) Alterations of glial cells in the mouse hippocampus during postnatal development. Cell Mol Neurobiol 29:1181–1189

    Article  PubMed  Google Scholar 

  • Lephart ED, Watson MA (1999) Maternal separation: hypothalamic-preoptic area and hippocampal calbindin-D28K and calretinin in male and female infantile rats. Neurosci Lett 267:41–44

    Article  PubMed  CAS  Google Scholar 

  • Liu YH, Wang L, Wei LC, Huang YG, Chen LW (2009) Up-regulation of d-serine might induce GABAergic neuronal degeneration in the cerebral cortex and hippocampus in the mouse pilocarpine model of epilepsy. Neurochem Res 34:1209–1218

    Article  PubMed  CAS  Google Scholar 

  • Lyck L, Kroigard T, Finsen B (2007) Unbiased cell quantification reveals a continued increase in the number of neocortical neurones during early post-natal development in mice. Eur J Neurosci 26:1749–1764

    Article  PubMed  Google Scholar 

  • Markakis EA, Gage FH (1999) Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol 406:449–460

    Article  PubMed  CAS  Google Scholar 

  • McDonald HY, Wojtowicz JM (2005) Dynamics of neurogenesis in the dentate gyrus of adult rats. Neurosci Lett 385:70–75

    Article  PubMed  CAS  Google Scholar 

  • Minkwitz HG, Holz L (1975) The ontogenetic development of pyramidal neurons in the hippocampus (CA1) of the rat. J Hirnforsch 16:37–54

    PubMed  CAS  Google Scholar 

  • Mu J, Xie P, Yang ZS, Yang DL, Lv FJ, Luo TY, Li Y (2007) Neurogenesis and major depression: implications from proteomic analyses of hippocampal proteins in a rat depression model. Neurosci Lett 416:252–256

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Franklin KBJ (2004) The mouse brain in stereotaxic coordinates. Elsevier/Academic Press, Amsterdam/Boston

    Google Scholar 

  • Paxinos G, Halliday G, Watson C, Koutcherov Y, Wang H (2007) Atlas of the developing mouse brain at E17.5, P0 and P6. Elsevier/Academic Press, Amsterdam/Boston

    Google Scholar 

  • Rao MS, Shetty AK (2004) Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci 19:234–246

    Article  PubMed  Google Scholar 

  • Schlessinger AR, Cowan WM, Gottlieb DI (1975) An autoradiographic study of the time of origin and the pattern of granule cell migration in the dentate gyrus of the rat. J Comp Neurol 159:149–175

    Article  PubMed  CAS  Google Scholar 

  • Sibbe M, Förster E, Basak O, Taylor V, Frotscher M (2009) Reelin and Notch1 cooperate in the development of the dentate gyrus. J Neurosci 29:8578–8585

    Article  PubMed  CAS  Google Scholar 

  • Soriano E, Cobas A, Fairén A (1986) Asynchronism in the neurogenesis of GABAergic and non-GABAergic neurons in the mouse hippocampus. Brain Res 395:88–92

    Article  PubMed  CAS  Google Scholar 

  • Soriano E, Cobas A, Fairén A (1989) Neurogenesis of glutamic acid decarboxylase immunoreactive cells in the hippocampus of the mouse. I: regio superior and regio inferior. J Comp Neurol 281:586–602

    Article  PubMed  CAS  Google Scholar 

  • Soriano E, Del Río JA, Martínez A, Supèr H (1994) Organization of the embryonic and early postnatal murine hippocampus. I. Immunocytochemical characterization of neuronal populations in the subplate and marginal zone. J Comp Neurol 342:571–595

    Article  PubMed  CAS  Google Scholar 

  • Takács J, Zaninetti R, Víg J, Vastagh C, Hámori J (2007) Postnatal expression pattern of doublecortin (DCX) in some areas of the developing brain of mouse. Ideggyogy Sz 60:144–147

    PubMed  Google Scholar 

  • Takács J, Zaninetti R, Vig J, Vastagh C, Hámori J (2008) Postnatal expression of doublecortin (Dcx) in the developing cerebellar cortex of mouse. Acta Biol Hung 59:147–161

    Article  PubMed  Google Scholar 

  • van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034

    Article  PubMed  Google Scholar 

  • Xiong K, Luo DW, Patrylo PR, Luo XG, Struble RG, Clough RW, Yan XX (2008) Doublecortin-expressing cells are present in layer II across the adult guinea pig cerebral cortex: partial colocalization with mature interneuron markers. Exp Neurol 211:271–282

    Article  PubMed  CAS  Google Scholar 

  • Xiong K, Cai Y, Zhang XM, Huang JF, Liu ZY, Fu GM, Feng JC, Clough RW, Patrylo PR, Luo XG, Hu CH, Yan XX (2010) Layer I as a putative neurogenic niche in young adult guinea pig cerebrum. Mol Cell Neurosci 45:180–191

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Miller MI, Plachez C, Richards LJ, Yarowsky P, van Zijl P, Mori S (2005) Mapping postnatal mouse brain development with diffusion tensor microimaging. Neuroimage 26:1042–1051

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Seung Uk Lee and Mrs. Hyun Sook Kim for their technical help and Seung-Hae Kwon of the Korean Basic Science Institute Chuncheon Center for technical assistance with the confocal image analyses. This study was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0010580), and by a grant (2010K000823) from Brain Research Center of the 21st Century Frontier Research Program funded by the Ministry of Education, Science and Technology, the Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moo-Ho Won or In Koo Hwang.

Additional information

Dae Young Yoo and Ki-Yeon Yoo contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, D.Y., Yoo, KY., Choi, J.W. et al. Time Course of Postnatal Distribution of Doublecortin Immunoreactive Developing/Maturing Neurons in the Somatosensory Cortex and Hippocampal CA1 Region of C57BL/6 Mice. Cell Mol Neurobiol 31, 729–736 (2011). https://doi.org/10.1007/s10571-011-9670-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-011-9670-9

Keywords

Navigation