Cellular and Molecular Neurobiology

, Volume 30, Issue 8, pp 1401–1406 | Cite as

The Coffin-Lowry Syndrome-Associated Protein rsk2 and Neurosecretion

  • M. Zeniou-Meyer
  • F. Gambino
  • Mohamed-Raafet Ammar
  • Y. Humeau
  • N. Vitale


Coffin-Lowry syndrome (CLS) is a syndromic form of X-linked mental retardation, characterized in male patients by psychomotor and growth retardation and various skeletal anomalies. CLS is caused by mutations in the RPS6KA3 gene, which encodes RSK2, a growth factor-regulated protein kinase. Cognitive deficiencies in CLS patients are prominent, but markedly variable in severity, even between siblings. However, the vast majority of patients are severely affected, with mental retardation ranging from moderate to profound. We used a RSK2-KO mouse model that shows no obvious brain abnormalities at the anatomical and histological levels to study the function of RSK2 in neurosecretion. Behavioral studies revealed normal motor coordination, but a profound retardation in spatial learning and a deficit in long-term spatial memory, providing evidence that RSK2 plays similar roles in mental functioning both in mice and human. We found that associative LTP at cortical inputs to the lateral amygdala was blocked in Rsk2 KO mice. Using an RNA interference rescue strategy in PC12 cells, we were able to demonstrate that RSK2 regulates catecholamine release through the phosphorylation of PLD. These results provide the first molecular evidence that RSK2 could regulate neurotransmitter release by activating PLD production of lipids required for exocytosis.


RSK2 Exocytosis PLD Mental retardation Coffin-Lowry syndrome 



We wish to thank Dr André Hanauer for providing us with the RSK2 KO mice and Drs Jens Rettig and Ute Becherer for the capacitance recording of bovine chromaffin cells. We wish to thank Dr Nancy Grant for critical reading of the manuscript. This work was supported by ANR grants (ANR-09-BLAN-0264-01) to NV and (ANR-06-003-Neuro-01) to YH.


  1. Bader MF, Vitale N (2009) Phospholipase D in calcium-regulated exocytosis: lessons from chromaffin cells. Biochim Biophys Acta 1791:936–941PubMedGoogle Scholar
  2. Bader MF, Holz RW, Kumakura K, Vitale N (2002) Exocytosis: the chromaffin cell as a model system. Ann NY Acad Sci 971:178–183CrossRefPubMedGoogle Scholar
  3. Bader MF, Doussau F, Chasserot-Golaz S, Vitale N, Gasman S (2004) Coupling actin and membrane dynamics during calcium-regulated exocytosis: a role for Rho and ARF GTPases. Biochim Biophys Acta 1742:37–49CrossRefPubMedGoogle Scholar
  4. Carriere A, Ray H, Blenis J, Roux PP (2008) The RSK factors of activating the Ras/MAPK signaling cascade. Front Biosci 13:4258–4275CrossRefPubMedGoogle Scholar
  5. Fourcaudot E, Gambino F, Humeau Y, Casassus G, Shaban H, Poulain B, Lüthi A (2008) cAMP/PKA signaling and RIM1alpha mediate presynaptic LTP in the lateral amygdala. Proc Natl Acad Sci USA 105:15130–15135CrossRefPubMedGoogle Scholar
  6. Fourcaudot E, Gambino F, Casassus G, Poulain B, Humeau Y, Lüthi A (2009) L-type voltage-dependent Ca(2+) channels mediate expression of presynaptic LTP in amygdala. Nat Neurosci 12:1093–1095CrossRefPubMedGoogle Scholar
  7. Gambino F, Khelfaoui M, Poulain B, Bienvenu T, Chelly J, Humeau Y (2010) Synaptic maturation at cortical projections to the lateral amygdala in a mouse model of Rett syndrome. PLoS One 5:e11399CrossRefPubMedGoogle Scholar
  8. Hauge C, Frodin M (2006) RSK, MSK in MAP kinase signalling. J Cell Sci 119:3021–3023CrossRefPubMedGoogle Scholar
  9. Humeau Y, Vitale N, Chasserot-Golaz S, Dupont JL, Du G, Frohman MA, Bader MF, Poulain B (2001) A role for phospholipase D1 in neurotransmitter release. Proc Natl Acad Sci USA 98:15300–15305CrossRefPubMedGoogle Scholar
  10. Humeau Y, Shaban H, Bissiere S, Lüthi A (2003) Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain. Nature 426:841–845CrossRefPubMedGoogle Scholar
  11. Humeau Y, Herry C, Kemp N, Shaban H, Fourcaudot E, Bissière S, Lüthi A (2005) Dendritic spine heterogeneity determines afferent-specific Hebbian plasticity in the amygdala. Neuron 45:119–131CrossRefPubMedGoogle Scholar
  12. Humeau Y, Reisel D, Johnson AW, Borchardt T, Jensen V, Gebhardt C, Bosch V, Gass P, Bannerman DM, Good MA, Hvalby Ø, Sprengel R, Lüthi A (2007) A pathway-specific function for different AMPA receptor subunits in amygdala long-term potentiation and fear conditioning. J Neurosci 27:10947–10956CrossRefPubMedGoogle Scholar
  13. Humeau Y, Gambino F, Chelly J, Vitale N (2009) X-linked mental retardation: focus on synaptic function and plasticity. J Neurochem 109:1–14CrossRefPubMedGoogle Scholar
  14. Poirier R, Jacquot S, Vaillend C, Soutthiphong AA, Libbey M, Davis S, Laroche S, Hanauer A, Welzl H, Lipp HP, Wolfer DP (2007) Deletion of the Coffin-Lowry syndrome gene Rsk2 in mice is associated with impaired spatial learning and reduced control of exploratory behavior. Behav Genet 37:31–50CrossRefPubMedGoogle Scholar
  15. Poteet-Smith CE, Smith JA, Lannigan DA, Freed TA, Sturgill TW (1999) Generation of constitutively active p90 ribosomal S6 kinase in vivo. Implications for the mitogen-activated protein kinase-activated protein kinase family. J Biol Chem 274:22135–22138CrossRefPubMedGoogle Scholar
  16. Rettig J, Neher E (2002) Emerging roles of presynaptic proteins in calcium-triggered exocytosis. Science 298:781–785CrossRefPubMedGoogle Scholar
  17. Schneggenburger R, Sakaba T, Neher E (2002) Vesicle pools and short-term synaptic depression: lessons from a large synapse. Trends Neurosci 25:206–212CrossRefPubMedGoogle Scholar
  18. Shaban H, Humeau Y, Herry C, Cassasus G, Shigemoto R, Ciocchi S, Berbieri S, Van der Putten H, Kaupmann K, Bettler B, Lüthi A (2006) Generalization of amygdala LTP and conditioned fear in the absence of presynaptic inhibition. Nat Neurosci 9:1028–1035CrossRefPubMedGoogle Scholar
  19. Stephenson JB, Hoffman MC, Russell AJ, Falconer J, Beach RC, Tolmie JL, McWilliam RC, Zuberi SM (2005) The movement disorders of Coffin-Lowry syndrome. Brain Dev 27:108–113CrossRefPubMedGoogle Scholar
  20. Thomas GM, Rumbaugh GR, Harrar DB, Huganir RL (2005) Ribosomal S6 kinase 2 interacts with and phosphorylates PDZ domain-containing proteins and regulates AMPA receptor transmission. Proc Natl Acad Sci USA 102:15006–15011CrossRefPubMedGoogle Scholar
  21. Trivier E, De Cesare D, Jacquot S, Pannetier S, Zackai E, Young I, Mandel JL, Sassone-Corsi P, Hanauer A (1996) Mutations in the kinase Rsk-2 associated with Coffin-Lowry syndrome. Nature 384:567–570CrossRefPubMedGoogle Scholar
  22. Tsvetkov E, Carlezon WA, Benes FM, Kandel ER, Bolshakov VY (2002) Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala. Neuron 34:289–300CrossRefPubMedGoogle Scholar
  23. Vitale N, Caumont AS, Chasserot-Golaz S, Du G, Wu S, Sciorra VA, Morris AJ, Frohman MA, Bader MF (2001) Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBO J 20:2424–2434CrossRefPubMedGoogle Scholar
  24. Zeniou M, Ding T, Trivier E, Hanauer A (2002) Expression analysis of RSK gene family members: the RSK2 gene, mutated in Coffin-Lowry syndrome, is prominently expressed in brain structures essential for cognitive function and learning. Hum Mol Genet 11:2929–2940CrossRefPubMedGoogle Scholar
  25. Zeniou-Meyer M, Zabari N, Ashery U, Chasserot-Golaz S, Haeberle AM, Demais V, Bailly Y, Gottfried I, Nakanishi H, Neiman AM, Du G, Frohman MA, Bader MF, Vitale N (2007) Phospholipase D1 production of phosphatidic acid at the plasma membrane promotes exocytosis of large dense-core granules at a late stage. J. Biol. Chem. 282:21746–21757CrossRefPubMedGoogle Scholar
  26. Zeniou-Meyer M, Liu Y, Béglé A, Olanish M, Hanauer A, Becherer U, Rettig J, Bader MF, Vitale N (2008) The Coffin-Lowry syndrome-associated protein RSK2 is implicated in calcium-regulated exocytosis through the regulation of PLD1. Proc Natl Acad Sci USA 105:8434–8439CrossRefPubMedGoogle Scholar
  27. Zeniou-Meyer M, Béglé A, Bader MF, Vitale N (2009) The Coffin-Lowry syndrome-associated protein RSK2 controls neuroendocrine secretion through the regulation of phospholipase D1 at the exocytotic sites. Ann NY Acad Sci 1152:201–208CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • M. Zeniou-Meyer
    • 1
  • F. Gambino
    • 1
  • Mohamed-Raafet Ammar
    • 1
  • Y. Humeau
    • 1
  • N. Vitale
    • 1
  1. 1.Département Neurotransmission and Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UPR-3212)Centre National de la Recherche Scientifique and Université de StrasbourgStrasbourgFrance

Personalised recommendations