Advertisement

Cellular and Molecular Neurobiology

, Volume 31, Issue 1, pp 135–143 | Cite as

Downregulation of the cAMP/PKA Pathway in PC12 Cells Overexpressing NCS-1

  • Bruno R. SouzaEmail author
  • Karen C. L. Torres
  • Débora M. Miranda
  • Bernardo S. Motta
  • Fernando S. Caetano
  • Daniela V. F. Rosa
  • Renan P. Souza
  • Antônio GiovaniJr.
  • Daniel S. Carneiro
  • Melissa M. Guimarães
  • Cristina Martins-Silva
  • Helton J. Reis
  • Marcus. V. Gomez
  • Andreas Jeromin
  • Marco A. Romano-Silva
Original Research

Abstract

It is well known that dopamine imbalances are associated with many psychiatric disorders and that the dopaminergic receptor D2 is the main target of antipsychotics. Recently it was shown that levels of two proteins implicated in dopaminergic signaling, Neuronal calcium sensor-1 (NCS-1) and DARPP-32, are altered in the prefrontal cortex (PFC) of both schizophrenic and bipolar disorder patients. NCS-1, which inhibits D2 internalization, is upregulated in the PFC of both patients. DARPP-32, which is a downstream effector of dopamine signaling, integrates the pathways of several neurotransmitters and is downregulated in the PFC of both patients. Here, we used PC12 cells stably overexpressing NCS-1 (PC12-NCS-1 cells) to address the function of this protein in DARPP-32 signaling pathway in vitro. PC12-NCS-1 cells displayed downregulation of the cAMP/PKA pathway, with decreased levels of cAMP and phosphorylation of CREB at Ser133. We also observed decreased levels of total and phosphorylated DARPP-32 at Thr34. However, these cells did not show alterations in the levels of D2 and phosphorylation of DARPP-32 at Thr75. These results indicate that NCS-1 modulates PKA/cAMP signaling pathway. Identification of the cellular mechanisms linking NCS-1 and DARPP-32 may help in the understanding the signaling machinery with potential to be turned into targets for the treatment of schizophrenia and other debilitating psychiatric disorders.

Keywords

NCS-1 DARPP-32 pDARPP-32(Thr34) pCREB(Ser133) PC12 Schizophrenia 

Notes

Acknowledgments

Financial support from CNPq Universal grant, Programa Institutos do Milênio/CNPq/FINEP, and John Simon Guggenheim Foundation. MAR-S and MVG are CNPq research fellows. BRS and DVFR are recipients of CAPES scholarships, RPS and MMM are recipients of CNPq scholarships, and KCLT and DMM are CNPq fellows. I would like to thank B. Lindsey and M. Mattocks for their suggestions and revisions to the English writing of this manuscript.

References

  1. Albert KA, Hemmings HC Jr, Adamo AI, Potkin SG, Akbarian S, Sandman CA, Cotman CW, Bunney WE Jr, Greengard P (2002) Evidence for decreased DARPP-32 in the prefrontal cortex of patients with schizophrenia. Arch Gen Psychiatry 59(8):705–712CrossRefPubMedGoogle Scholar
  2. Ames JB, Ishima R, Tanaka T, Gordon JI, Stryer L, Ikura M (2002) Molecular mechanics of calcium-myristoyl switches. Nature 389(6647):198–202Google Scholar
  3. Bai J, He F, Novikova SI, Undie AS, Dracheva S, Haroutunian V, Lidow MS (2004) Abnormalities in the dopamine system in schizophrenia may lie in altered levels of dopamine receptor-interacting proteins. Biol Psychiatry 56(6):427–440CrossRefPubMedGoogle Scholar
  4. Bergson C, Levenson R, Goldman-Rakic PS, Lidow MS (2003) Dopamine receptor-interacting proteins: the Ca(2+) connection in dopamine signaling. Trends Pharmacol Sci 24(9):486–492CrossRefPubMedGoogle Scholar
  5. Bibb JA, Snyder GL, Nishi A, Yan Z, Meijer L, Fienberg AA, Tsai LH, Kwon YT, Girault JA, Czernik AJ, Huganir RL, Hemmings HC Jr, Nairn AC, Greengard P (1999) Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signaling in neurons. Nature 402(6762):669–671CrossRefPubMedGoogle Scholar
  6. Bonci A, Hopf FW (2005) The dopamine D2 receptor: new surprises from an old friend. Neuron 47:335–338CrossRefPubMedGoogle Scholar
  7. Chiasson K, Daoust B, Levesque D, Martinoli MG (2006) Dopamine D2 agonists, bromocriptine and quinpirole, increase MPP+-induced toxicity in PC12 cells. Neurotox Res 10(1):31–42CrossRefPubMedGoogle Scholar
  8. Courtney ND, Howlett AC, Westfall TC (1991) Dopaminergic regulation of dopamine release from PC12 cells via a pertussis toxin-sensitive G protein. Neurosci Lett 122(2):261–264CrossRefPubMedGoogle Scholar
  9. Dunlop BW, Nemeroff CB (2007) The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64(3):327–337CrossRefPubMedGoogle Scholar
  10. Enjalbert A, Bockaert J (1983) Pharmacological characterization of the D2 dopamine receptor negatively coupled with adenylate cyclase in rat anterior pituitary. Mol Pharmacol 23(3):576–584PubMedGoogle Scholar
  11. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379(6566):606–612CrossRefPubMedGoogle Scholar
  12. Gomez M, De Castro E, Guarin E, Sasakura H, Kuhara A, Mori I, Bartfai T, Bargmann CI, Nef P (2001) Ca2+ signaling via the neuronal calcium sensor-1 regulates associative learning and memory in C. elegans. Neuron 30(1):241–248CrossRefPubMedGoogle Scholar
  13. Goodman A (2008) Neurobiology of addiction. An integrative review. Biochem Pharmacol 75(1):266–322CrossRefPubMedGoogle Scholar
  14. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73(7):2424–2428CrossRefPubMedGoogle Scholar
  15. Greengard P (2001) The neurobiology of slow synaptic transmission. Science 294(5544):1024–1030CrossRefPubMedGoogle Scholar
  16. Guimarães MM, Reis HJ, Guimarães LP, Carneiro DS, Ribeiro FM, Gomez MV, Jeromin A, Romano-Silva MA (2009) Modulation of muscarinic signaling in PC12 cells overexpressing neuronal Ca2+ sensor-1 protein. Cell Mol Biol (Noisy-le-grand) 55 (Suppl):OL1138-50Google Scholar
  17. Hendricks KB, Wang BQ, Schnieders EA, Thorner J (1999) Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nat Cell Biol 1(4):234–241CrossRefPubMedGoogle Scholar
  18. Hernandez-Lopez S, Tkatch T, Perez-Garci E, Galarraga E, Bargas J, Hamm H, Surmeier DJ (2000) D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[beta]1-IP3-calcineurin-signaling cascade. J Neurosci 20(24):8987–8995PubMedGoogle Scholar
  19. Hilfiker S (2003) Neuronal calcium sensor-1: a multifunctional regulator of secretion. Biochem Soc Trans 31(4):828–832CrossRefPubMedGoogle Scholar
  20. Ishikawa M, Mizukami K, Iwakiri M, Asada T (2007) Immunohistochemical and immunoblot analysis of Dopamine and cyclic AMP-regulated phosphoprotein, relative molecular mass 32,000 (DARPP-32) in the prefrontal cortex of subjects with schizophrenia and bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 31(6):1177–1181CrossRefPubMedGoogle Scholar
  21. Ito K, Haga T, Lameh J, Sadée W (1999) Sequestration of dopamine D2 receptors depends on coexpression of G-protein-coupled receptor kinases 2 or 5. Eur J Biochem 260(1):112–119CrossRefPubMedGoogle Scholar
  22. Kabbani N, Negyessy L, Lin R, Goldman-Rakic P, Levenson R (2002) Interaction with neuronal calcium sensor NCS-1 mediates desensitization of the D2 dopamine receptor. J Neurosci 22(19):8476–8486PubMedGoogle Scholar
  23. Kavelaars A, Cobelens PM, Teunis MA, Heijnen CJ (2005) Changes in innate and acquired immune responses in mice with targeted deletion of the dopamine transporter gene. J Neuroimmunol 161(1–2):162–168CrossRefPubMedGoogle Scholar
  24. Kim KM, Valenzano KJ, Robinson SR, Yao WD, Barak LS, Caron MG (2001) Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and beta-arrestins. J Biol Chem 276(40):37409–37414CrossRefPubMedGoogle Scholar
  25. Koh PO, Undie AS, Kabbani N, Levenson R, Goldman-Rakic PS, Lidow MS (2003) Up-regulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients. Proc Natl Acad Sci USA 100(1):313–317CrossRefPubMedGoogle Scholar
  26. Koizumi S, Rosa P, Willars GB, Challiss RA, Taverna E, Francolini M, Bootman MD, Lipp P, Inoue K, Roder J, Jeromin A (2002) Mechanisms underlying the neuronal calcium sensor-1-evoked enhancement of exocytosis in PC12 cells. J Biol Chem 277(33):30315–30324CrossRefPubMedGoogle Scholar
  27. Lindskog M, Svenningsson P, Fredholm BB, Greengard P, Fisone G (1999) Activation of dopamine D2 receptors decreases DARPP-32 phosphorylation in striatonigral and striatopallidal projection neurons via different mechanisms. Neuroscience 88(4):1005–1008CrossRefPubMedGoogle Scholar
  28. Martone ME, Edelmann VM, Ellisman MH, Nef P (1999) Cellular and subcellular distribution of the calcium-binding protein NCS-1 in the central nervous system of the rat. Cell Tissue Res 295(3):395–407CrossRefPubMedGoogle Scholar
  29. McFerran BW, Graham ME, Burgoyne RD (1998) Neuronal Ca2+ sensor 1, the mammalian homologue of frequenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules. J Biol Chem 273(35):22768–22772CrossRefPubMedGoogle Scholar
  30. Mueser KT, McGurk SR (2004) Schizophrenia. Lancet 363:2063–2072CrossRefPubMedGoogle Scholar
  31. Nakamura TY, Jeromin A, Smith G, Kurushima H, Koga H, Nakabeppu Y, Wakabayashi S, Nabekura J (2006) Novel role of neuronal Ca2+ sensor-1 as a survival factor up-regulated in injured neurons. J Cell Biol 172(7):1081–1091Google Scholar
  32. Nef S, Fiumelli H, de Castro E, Raes MB, Nef P (1995) Identification of neuronal calcium sensor (NCS-1) possibly involved in the regulation of receptor phosphorylation. J Recept Signal Transduct Res 15(1–4):365–378PubMedGoogle Scholar
  33. Negyessy L, Goldman-Rakic PS (2005) Subcellular localization of the dopamine D2 receptor and coexistence with the calcium-binding protein neuronal calcium sensor-1 in the primate prefrontal cortex. J Comp Neurol 488(4):464–475CrossRefPubMedGoogle Scholar
  34. Nishi A, Snyder GL, Greengard P (1997) Bidirectional regulation of DARPP-32 phosphorylation by dopamine. J Neurosci 17(21):8147–8155PubMedGoogle Scholar
  35. O’Callaghan DW, Burgoyne RD (2003) Role of myristoylation in the intracellular targeting of neuronal calcium sensor (NCS) proteins. Biochem Soc Trans 31(5):963–965CrossRefPubMedGoogle Scholar
  36. O’Callaghan DW, Ivings L, Weiss JL, Ashby MC, Tepikin AV, Burgoyne RD (2002) Differential use of myristoyl groups on neuronal calcium sensor proteins as a determinant of spatio-temporal aspects of Ca2+ signal transduction. J Biol Chem 277(16):14227–14237CrossRefPubMedGoogle Scholar
  37. Ofir R, Dwarki VJ, Rashid D, Verma IM (1991) CREB represses transcription of fos promoter: role of phosphorylation. Gene Expr 1(1):55–60PubMedGoogle Scholar
  38. Olafsson P, Soares HD, Herzog KH, Wang T, Morgan JI, Lu B (1997) The Ca2+ binding protein, frequenin is a nervous system-specific protein in mouse preferentially localized in neurites. Brain Res Mol Brain Res 44(1):73–82CrossRefPubMedGoogle Scholar
  39. Reis HJ, Rosa DV, Guimarães MM, Souza BR, Barros AG, Pimenta FJ, Souza RP, Torres KC, Romano-Silva MA (2007) Is DARPP-32 a potential therapeutic target? Expert Opin Ther Targets 11(12):1649–1661CrossRefPubMedGoogle Scholar
  40. Sippy T, Cruz-Martín A, Jeromin A, Schweizer FE (2003) Acute changes in short-term plasticity at synapses with elevated levels of neuronal calcium sensor-1. Nat Neurosci 6(10):1031–1038CrossRefPubMedGoogle Scholar
  41. Souza BR, Souza RP, Rosa DV, Guimarães MM, Correa H, Romano-Silva MA (2006) Dopaminergic intracellular signal integrating proteins: relevance to schizophrenia. Dialogues Clin Neurosci 8:95–100PubMedGoogle Scholar
  42. Souza BR, Motta BS, Rosa DV, Torres KC, Castro AA, Comim CM, Sampaio AM, Lima FF, Jeromin A, Quevedo J, Romano-Silva MA (2008) DARPP-32 and NCS-1 expression is not altered in brains of rats treated with typical or atypical antipsychotics. Neurochem Res 33(3):533–538CrossRefPubMedGoogle Scholar
  43. Souza BR, Torres KC, Miranda DM, Motta BS, Scotti-Muzzi E, Guimarães MM, Carneiro DS, Rosa DV, Souza RP, Reis HJ, Jeromin A, Romano-Silva MA (2010) Lack of effects of typical and atypical antipsychotics in DARPP-32 and NCS-1 levels in PC12 cells overexpressing NCS-1. J Negat Results Biomed 19(9):4CrossRefGoogle Scholar
  44. Stoof JC, Kebabian JW (1981) Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum. Nature 294(5839):366–368CrossRefPubMedGoogle Scholar
  45. Svenningsson P, Lindskog M, Ledent C, Parmentier M, Greengard P, Fredholm BB, Fisone G (2000) Regulation of the phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa in vivo by dopamine D1, dopamine D2, and adenosine A2A receptors. Proc Natl Acad Sci USA 97(4):1856–1860CrossRefPubMedGoogle Scholar
  46. Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P (2004) DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 44:269–296CrossRefPubMedGoogle Scholar
  47. Torres KC, Souza BR, Miranda DM, Sampaio AM, Nicolato R, Neves FS, Barros AG, Dutra WO, Gollob KJ, Correa H, Romano-Silva MA (2009) Expression of neuronal calcium sensor-1 (NCS-1) is decreased in leukocytes of schizophrenia and bipolar disorder patients. Prog Neuropsychopharmacol Biol Psychiatry 33(2):229–234CrossRefPubMedGoogle Scholar
  48. Wang H, Yuan G, Prabhakar NR, Boswell M, Katz DM (2006) Secretion of brain-derived neurotrophic factor from PC12 cells in response to oxidative stress requires autocrine dopamine signaling. J Neurochem 96(3):694–705CrossRefPubMedGoogle Scholar
  49. Zucker RS (2003) NCS-1 stirs somnolent synapses. Nat Neurosci 6(10):1006–1008CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Bruno R. Souza
    • 1
    Email author
  • Karen C. L. Torres
    • 1
  • Débora M. Miranda
    • 1
  • Bernardo S. Motta
    • 1
  • Fernando S. Caetano
    • 1
  • Daniela V. F. Rosa
    • 1
  • Renan P. Souza
    • 1
  • Antônio GiovaniJr.
    • 2
  • Daniel S. Carneiro
    • 2
  • Melissa M. Guimarães
    • 2
  • Cristina Martins-Silva
    • 2
  • Helton J. Reis
    • 2
  • Marcus. V. Gomez
    • 2
  • Andreas Jeromin
    • 3
  • Marco A. Romano-Silva
    • 1
  1. 1.Laboratório de Neurociência, Departamento de Saúde Mental, Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Departamento de Farmacologia, ICBUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Allen Institute for Brain ScienceSeattleUSA

Personalised recommendations