Skip to main content
Log in

Effect of Acute Administration of 3-Butyl-1-Phenyl-2-(Phenyltelluro)Oct-En-1-One on Oxidative Stress in Cerebral Cortex, Hippocampus, and Cerebellum of Rats

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Organotellurium compounds have been synthesized since 1840, but pharmacological and toxicological studies about them are still incipient. Therefore, the objective of this study was to verify the effect of acute administration of the organochalcogen 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one on some parameters of oxidative stress in the brain of 30-day-old rats. Animals were treated intraperitoneally with a single dose of the organotellurium (125, 250, or 500 μg/kg body weight) and sacrificed 60 min after the injection. The cerebral cortex, the hippocampus, and the cerebellum were dissected and homogenized in KCl. Afterward, thiobarbituric acid reactive substances (TBARS), carbonyl, sulfhydryl, catalase (CAT), superoxide dismutase (SOD), nitric oxide (NO) formation, and hydroxyl radical production were measured in the brain. The organotellurium enhanced TBARS in the cerebral cortex and the hippocampus, and increased protein damage (carbonyl) in the cerebral cortex and the cerebellum. In contrast, the compound provoked a reduced loss of thiol groups measured by the sulfhydryl assay in all the tissues studied. Furthermore, the activity of the antioxidant enzyme CAT was reduced by the organochalcogen in the cerebral cortex and the cerebellum, and the activity of SOD was inhibited in all the brain tissues. Moreover, NO production was increased in the cerebral cortex and the cerebellum by this organochalcogen, and hydroxyl radical formation was also enhanced in the cerebral cortex. Our findings indicate that this organotellurium compound induces oxidative stress in the brain of rats, corroborating that this tissue is a potential target for organochalcogen action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Aksenov MY, Markesbery WR (2001) Change in thiol content and expression of glutathione redox system gene in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145

    Article  PubMed  CAS  Google Scholar 

  • Alho H, Leinonen JS, Erhola M, Lonnrot K, Acjmelacus R (1998) Assay of antioxidant capacity of human plasma and CSF in aging and disease. Restor Neurol Neurosci 12:159–165

    PubMed  CAS  Google Scholar 

  • Ávila DS, Beque MC, Folemer V, Braga AL, Zeni G, Nogueira CW, Soares FAA, Rocha JBT (2006) Diethyl 2-phenyl-2 tellurophenyl vinylphosphonate: an organotellurium compound with low toxicity. Toxicology 224:100–107

    Article  PubMed  CAS  Google Scholar 

  • Ávila DS, Gubert P, Corte CLD, Alves D, Nogueira CW, Rocha JBT, Soares FAA (2007) A biochemical and toxicological study with 2-phenyl-2 tellurophenyl vinylphosphonate in sub- intraperitonial treatment in mice. Life Sci 80:1865–1872

    Article  PubMed  CAS  Google Scholar 

  • Behl C, Moosmann B (2002) Oxidative nerve cell death in Alzheimer’s disease and stroke: antioxidants as neuroprotective compounds. Biol Chem 383:521–536

    Article  PubMed  CAS  Google Scholar 

  • Berg D, Youdim MB (2006) Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 17:5–17

    Article  PubMed  Google Scholar 

  • Bogdanov MB, Andreassen OA, Dedeoglu A, Ferrante RJ, Beal MF (2001) Increased oxidative damage to DNA in a transgenic mouse of Huntington’s disease. J Neurochem 79:1246–1249

    Article  PubMed  CAS  Google Scholar 

  • Borges VC, Rocha JBT, Nogueira CW (2005) Effect of diphenyl diselenide, diphenyl ditelluride and ebselen on cerebral Na + , K + ATPase activity in rats. Toxicology 215:191–197

    Article  PubMed  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal Lipid Peroxidation. Meth Enzymol 52:302–309

    Article  PubMed  CAS  Google Scholar 

  • Carvalho CAS, Gemelli T, Guerra RB, Oliboni L, Salvador M, Dani C, Araújo AS, Mascarenhas M, Funchal C (2009) Effect of in vitro exposure of human serum to 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one on oxidative stress. Mol Cell Biochem 332:127–134

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Vallyathan V, Castranova V, Shi X (2001) Cell apoptosis induced carcinogenic metals. Mol Cel Biochem 221:183–188

    Article  Google Scholar 

  • Comasseto JV, Ling LW, Petragnani N, Stefani HA (1997) Vinylic selenides and tellurides-preparation, reactivity and synthetic application. Synthesis 4:373–376

    Article  Google Scholar 

  • Engman L, Kanda T, Gallegos A, Williams R, Powis G (2000) Water soluble organotellurium compounds inhibit thioredoxin reductase and the growth of human cancer cells. Anti-Cancer Drug Des 15:323–330

    CAS  Google Scholar 

  • Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi E (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266

    Article  PubMed  CAS  Google Scholar 

  • Funchal C, Moretto MB, Vivian L, Zeni G, Rocha JBT, Pessoa-Pureur R (2006a) Diphenyl ditelluride-and methylmercury-induced hyperphosphorylation of the high molecular weight neurofilament subunit is prevented by organoslenium compounds in cerebral cortex of young rats. Toxicology 222:143–153

    Article  PubMed  CAS  Google Scholar 

  • Funchal C, Latini A, Jacques-Silva MC, Santos AQ, Buzin L, Gottfried C, Wajner M, Pessoa-Pureur R (2006b) Morphological alterations and induction of oxidative stress in glial cells caused by the branched-chain -keto acids accumulating in maple syrup urine disease. Neurochem Int 49:640–650

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (1981) Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett 128:347–352

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Measurement of reactive species. In: Halliwell B, Gutteridge JMC (eds) Free Radicals in Biology and Medicine. Oxford University Press, Oxford, pp 268–340

    Google Scholar 

  • Heffner JA, Repine JE (1989) State of the art: pulmonary strategies of antioxidant defense. Am Rev Respir Dis 140:531–554

    PubMed  CAS  Google Scholar 

  • Hevel JM, Marletta MA (1994) Nitric oxide synthase assays. Methods Enzymol 233:250–258

    Article  PubMed  CAS  Google Scholar 

  • Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, Beckman JS (1992) Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 298:431–437

    Article  PubMed  CAS  Google Scholar 

  • Iwase K, Tatsuishi T, Nishimura Y, Yamaguch J, Oyama Y, Miyoshi N, Wada M (2004) Cytometric analysis of adverse action of diphenyl ditelluride on rat thymocytes: cell shrinkage as a cytotoxic parameter. Environ Toxicol 19:614–661

    Article  PubMed  CAS  Google Scholar 

  • Jaffe EK (1995) Porphobilinogen synthase, the first source of heme’s asymetry. J Bioenerg Biomembr 27:169–179

    Article  PubMed  CAS  Google Scholar 

  • Kann O, Kovács R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292:C641–C657

    Article  PubMed  CAS  Google Scholar 

  • Kaur P, Yousuf S, Ansari MA, Siddiqui A, Ahmad AS, Islam F (2003) Tellurium-induced dose-dependent impairment of antioxidant status: differential effects in cerebrum, cerebellum, and brainstem of mice. Biol Trace Elem Res 94:247–258

    Article  PubMed  CAS  Google Scholar 

  • Laden BP, Porter TD (2001) Inhibition oh human squalene monooxigenase by tellurium compounds: evidence of interaction with vicinal sulfhydryls. J Lipid Res 42:235–240

    PubMed  CAS  Google Scholar 

  • Lehtinen MK, Bonni A (2006) Modeling oxidative stress in the central nervous system. Curr Mol Med 6:871–881

    Article  PubMed  CAS  Google Scholar 

  • Lissi E, Salim-Hanna M, Pascual C, Del Castillo MD (1995) Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements. Free Radic Biol Med 18:153–158

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–267

    PubMed  CAS  Google Scholar 

  • Maciel EN, Bolzan RC, Braga AL, Rocha JBT (2000) Diphenyl diselenide and diphenyl ditelluride differentially affect d-aminolevulinate dehydratase from liver, kidney and brain of mice. J Biochem Mol Toxicol 14:310–319

    Article  PubMed  CAS  Google Scholar 

  • Marklund, S. (1985). Handbook of methods for oxygen radical research. Boca Rat. CRC. Press., pp. 243-247

  • Meotti FC, Borges VC, Zeni JBT, Nogueira CW (2003) Potential renal and hepatic toxicity of diphenyl diselenide, diphenyl ditelluride and ebselen for rats and mice. Toxicol Lett 143:9–16

    Article  PubMed  CAS  Google Scholar 

  • Moretto MB, Funchal C, Zeni G, Rocha JBT, Pessoa-Pureur R (2005) Organoselenium compounds prevent hyperphosphorylation of cytoskeletal proteins induced by the neurotoxic agent diphenyl ditelluride in cerebral cortex of young rats. Toxicology 210:213–222

    Article  PubMed  CAS  Google Scholar 

  • Nogueira CW, Rotta LN, Perry ML, Souza DO, Rocha JBT (2001) Diphenyl diselenide and diphenyl ditelluride affect the rat glutamatergic system ¨ın vitro and in vivo. Brain Res 906:157–163

    Article  PubMed  CAS  Google Scholar 

  • Nogueira CW, Rotta LN, Zeni G, Souza DO, Rocha JBT (2002) Exposure to ebselen changes glutamate uptake and release by rat brain synaptossomes. Neurochem Res 27:283–288

    Article  PubMed  CAS  Google Scholar 

  • Nogueira CW, Borges VC, Zeni G, Rocha JBT (2003) Organochalcogens effects on δ-aminolevilinate dehydratase activity from human erythrocytic cells in vitro. Toxicology 191:169–178

    Article  PubMed  CAS  Google Scholar 

  • Nogueira CW, Zeni G, Rocha JBT (2004) Organoselenium and organotellurium compounds: pharmacology and toxicology. Chem Rev 104:6255–6286

    Article  PubMed  CAS  Google Scholar 

  • Ogra Y, Kobayashi R, Ishiwata K, Suzuki KT (2008) Comparison of distribution and metabolism between tellurium and selenium in rats. J Inorg Biochem 102:1507–1513

    Article  PubMed  CAS  Google Scholar 

  • Penz J, Gemelli T, Carvalho CAS, Guerra RB, Oliboni L, Salvador M, Dani C, Araújo AS, Funchal C (2009) Effect of 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one on oxidative stress in cerebral cortex of rats. Food Chem Toxicol 47:745–751

    Article  PubMed  CAS  Google Scholar 

  • Petragnani N (1994) Tellurium in organic synthesis. Academic Press, New York

    Google Scholar 

  • Reznick AZ, Packer L (1994) Carbonyl assay for determination of oxidatively modified proteins. Meth Enzymol 233:357–363

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Martin E, Casajeros MJ, Canals S, de Bernardo S, Mena MA (2002) Thiolic antioxidants protect from nitric oxide-induced toxicity in fetal midbrain cultures. Neuropharmacology 43:877–888

    Article  PubMed  CAS  Google Scholar 

  • Rooseboom M, Vermeulen NPE, Durgut F, Commandeur JNM (2002) Comparative study on the bioactivation mechanisms and cytotoxicity of Te-Phenyl-L-tellurocysteine, Se-Phenyl-L-selenocysteine and S-Phenyl-L-cysteine. Chem Res Toxicol 15:1610–1618

    Article  PubMed  CAS  Google Scholar 

  • Sagara JI, Miura K, Bannai S (1993) Maintenance of neuronal glutathione by glial cells. J Neurochem 61:1672–1676

    Article  PubMed  CAS  Google Scholar 

  • Sailer BL, Liles N, Dickerson S, Chasteen TG (2003) Cytometric determination of novel organotellurium compound toxicity in a promyelocitic (HL-60) cell line. Arch Toxicol 77:30–36

    Article  PubMed  CAS  Google Scholar 

  • Sailer BL, Liles N, Dickerson S, Sumners S, Chasteen TG (2004) Organotellurium compound toxicity in a promyelocytic cell line compared to non-tellurium-containing organic analog. Toxicol In Vitro 18:475–482

    Article  PubMed  CAS  Google Scholar 

  • Savegnago L, Borges VC, Alves D, Jesse C, Rocha JBT, Nogueira CW (2006) Evaluation of antioxidant activity and potential toxicity of 1-buthyltelurenyl-2-methylthioheptene. Life Sci 79:1546–1552

    Article  PubMed  CAS  Google Scholar 

  • Seifried DE, Anderson EI, Fisher JA, Milner A (2007) Review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 18:567–579

    Article  PubMed  CAS  Google Scholar 

  • Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31S–38S

    Article  PubMed  CAS  Google Scholar 

  • Silveira CC, Braga AL, Guerra RB (2002) Stereoselective synthesis of alpha-phenylchalcogeno-alpha, beta -unsaturated esters. Tetrahedron Lett 43:3395–3397

    Article  CAS  Google Scholar 

  • Stamler JS, Toone EJ (2002) The decomposition of thionitrites. Curr Opin Chem Biol 6:779–785

    Article  PubMed  CAS  Google Scholar 

  • Stangherlin EC, Favero AM, Zeni G, Rocha JBT, Nogueira CW (2005) Teratogenic vulnerability of Wistar rats to diphenyl ditelluride. Toxicology 2:231–239

    Article  CAS  Google Scholar 

  • Stangherlin EC, Ardais AP, Rocha JBT, Nogueira CW (2009) Exposure to diphenyl ditelluride, via maternal milk, causes oxidative stress in cerebral cortex, hippocampus and striatum of young rats. Arch Toxicol 83(5):485–491

    Article  PubMed  CAS  Google Scholar 

  • Stone R, Stewart VC, Hurst RD, Clark JB, Heales SJ (1999) Astrocyte nitric oxide causes neuronal mitochondrial damage, but antioxidant release limits neuronal cell death. Ann NY Acad Sci 893:400–403

    Article  PubMed  CAS  Google Scholar 

  • Strayo D, Adhikari S, Tilak-Jain J, Menon VP, Devasagayam TPA (2008) Antioxidant activity of an aminothiazole compound: possible mechanisms. Chem Biol Interact 173:215–223

    Article  CAS  Google Scholar 

  • Tremaroli V, Fedi S, Zannoni D (2007) Evidence for a tellurite-dependent generation of reactive oxygen species and absence of a tellurite-mediated adaptive response to oxidative stress in cells of Pseudomonas pseudoalcaligenes KF707. Arch Microbiol 187:127–135

    Article  PubMed  CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  • Widy-Tysziewicz E, Piechal A, Gajkowska B, Smialek M (2002) Tellurium-induced cognitive deficits in rats are related to neuropathological changes in the central nervous system. Toxicol Lett 131:203–214

    Article  Google Scholar 

  • Yamada N, Kojima R, Uno M, Akiyama T, Kitaura H, Narumi K, Nishiuchi K (2002) Phase-change material for use in rewritable dual-layer optical disk. SPIE 4342:55–63

    Article  CAS  Google Scholar 

  • Yamakura F, Matsumoto T, Ikeda K, Taka H, Fujimura T, Murayama K, Watanabe E, Tamaki M, Imai T, Takamori K (2005) Nitrated and oxidized products of a single tryptophan residue in human Cu, Zn-superoxide dismutase treated with either peroxynitrite-carbon dioxide or myeloperoxidase-hydrogen peroxide-nitrite. J Biochem 138:57–69

    Article  PubMed  CAS  Google Scholar 

  • Yeo WS, Lee SJ, Lee JR, Kim KP (2008) Nitrosative protein tyrosine modifications: biochemistry and functional significance. BMB Rep 31:194–203

    Google Scholar 

  • Zeni G, Braga AL, Stefani HA (2003) Palladium-catalyzed coupling of sp2- hybrized tellurides. Acc Chem Res 36:718–731

    Article  CAS  Google Scholar 

  • Zeni G, Ludtke D, Panatieri RB, Braga AL (2006) Vinylic tellurides: from preparation to their applicability in organic synthesis. Chem Rev 106:1032–1076

    Article  PubMed  CAS  Google Scholar 

  • Zugno AI, Stefanello FM, Scherer EBS, Mattos C, Pederzolli CD, Andrade VM, Wannmacher CMD, Wajner M, Dutra-Filho CS, Wyse ATS (2008) Guanidinoacetate decreases antioxidant defenses and total protein sulfhydryl content in striatum of rats. Neurochem Res 33:1804–1810

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Centro Universitário Metodista IPA and Universidade de Caxias do Sul.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Funchal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funchal, C., Carvalho, C.A.S., Gemelli, T. et al. Effect of Acute Administration of 3-Butyl-1-Phenyl-2-(Phenyltelluro)Oct-En-1-One on Oxidative Stress in Cerebral Cortex, Hippocampus, and Cerebellum of Rats. Cell Mol Neurobiol 30, 1135–1142 (2010). https://doi.org/10.1007/s10571-010-9547-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-010-9547-3

Keywords

Navigation