Skip to main content
Log in

Mitochondrial DNA Damage and the Involvement of Antioxidant Defense and Repair System in Hippocampi of Rats with Chronic Seizures

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In this study, we demonstrated a decreased level of mitochondrial DNA (mtDNA) with a large number of oxidized bases in hippocampi of rats with epilepsy induced by pilocarpine. In order to verify the underlying mechanism of mtDNA impairment, we detected the response of antioxidant defense system and mitochondrial base excision repair (mtBER) pathway. Superoxide dismutase2 (SOD-2) and glutathione (GSH) were significantly decreased in the experimental group, manifesting a decreased capacity of scavenging free radicals. Mitochondrial base excision repair (mtBER) pathway, which is the main repair pathway for the removal of oxidative base modifications, displayed unbalanced expression in epileptic group. DNA polymeraseγ (polγ) increased, while apurinic/apyrimidinic endonuclease (APE1), one of mtBER initiators, decreased in mitochondria in the chronic phase of epileptogenesis. In conclusion, mtDNA was impaired during chronic recurrent seizures, whereas the endogenous antioxidants and the mtBER pathway failed to respond to the elevated mtDNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

mtDNA:

Mitochondrial DNA

nDNA:

Nuclear DNA

OXPHOS:

Oxidative phosphorylation

SE:

Status epilepticus

SOD:

Superoxide dismutase

GSH:

Glutathione

BER:

Base excision repair

mtBER:

Mitochondrial base excision repair

ROS:

Reactive oxygen species

APE1:

Apurinic/apyrimidinic endonuclease1

polγ:

DNA polymerase γ

fpg:

Formamidopyrimidine glycosylase

Tfam:

Mitochondrial transcription factor A

SRS:

Spontaneous recurrent seizure

References

  • Acharya MM, Katyare SS (2005) Structural and functional alterations in mitochondrial membrane in picrotoxin-induced epileptic rat brain. Exp Neurol 192:79–88

    Article  CAS  PubMed  Google Scholar 

  • Bohr VA, Stevnsner T, de Souza-Pinto NC (2002) Mitochondrial DNA repair of oxidative damage in mammalian cells. Gene 286:127–134

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay R, Wiederhold L, Szczesny B, Boldogh I, Hazra TK, Izumi T, Mitra S (2006) Identification and characterization of mitochondrial abasic (AP)-endonuclease in mammalian cells. Nucl Acids Res 34:2067–2076

    Article  CAS  PubMed  Google Scholar 

  • Chechlacz M, Vemuri MC, Naegele JR (2001) Role of DNA-dependent protein kinase in neuronal survival. J Neurochem 78:141–154

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Lan J, Pei W, Chen J (2000) Detection of DNA base-excision repair activity for oxidative lesions in adult rat brain mitochondria. J Neurosci Res 61:225–236

    Article  CAS  PubMed  Google Scholar 

  • Chuang YC, Chang AY, Lin JW, Hsu SP, Chan SH (2004) Mitochondrial dysfunction and ultrastructural damage in the hippocampus during kainic acid-induced status epilepticus in the rat. Epilepsia 45:1202–1209

    Article  CAS  PubMed  Google Scholar 

  • Cock HR, Tong X, Hargreaves IP, Heales SJ, Clark JB, Patsalos PN, Thom M, Groves M, Schapira AH, Shorvon SD, Walker MC (2002) Mitochondrial dysfunction associated with neuronal death following status epilepticus in rat. Epilepsy Res 48:157–168

    Article  CAS  PubMed  Google Scholar 

  • Crawford DR, Suzuki T, Sesay J, Davies KJ (2002) Analysis of gene expression following oxidative stress. Methods Mol Biol 196:155–162

    CAS  PubMed  Google Scholar 

  • Culmsee C, Bondada S, Mattson MP (2001) Hippocampal neurons of mice deficient in DNA-dependent protein kinase exhibit increased vulnerability to DNA damage, oxidative stress and excitotoxicity. Brain Res Mol Brain Res 87:257–262

    Article  CAS  PubMed  Google Scholar 

  • Davies KJ (1995) Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 61:1–31

    CAS  PubMed  Google Scholar 

  • Endres M, Biniszkiewicz D, Sobol RW, Harms C, Ahmadi M, Lipski A, Katchanov J, Mergenthaler P, Dirnagl U, Wilson SH, Meisel A, Jaenisch R (2004) Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase. J Clin Invest 113:1711–1721

    CAS  PubMed  Google Scholar 

  • Fishel ML, Seo YR, Smith ML, Kelley MR (2003) Imbalancing the DNA base excision repair pathway in the mitochondria; targeting and overexpressing N-methylpurine DNA glycosylase in mitochondria leads to enhanced cell killing. Cancer Res 63:608–615

    CAS  PubMed  Google Scholar 

  • Fonnum F, Lock EA (2004) The contributions of excitotoxicity, glutathione depletion and DNA repair in chemically induced injury to neurones: exemplified with toxic effects on cerebellar granule cells. J Neurochem 88:513–531

    Article  CAS  PubMed  Google Scholar 

  • Fortini P, Pascucci B, Parlanti E, D’Errico M, Simonelli V, Dogliotti E (2003) The base excision repair: mechanisms and its relevance for cancer susceptibility. Biochimie 85:1053–1071

    Article  CAS  PubMed  Google Scholar 

  • Frossi B, Tell G, Spessotto P, Colombatti A, Vitale G, Pucillo C (2002) H(2)O(2) induces translocation of APE/Ref-1 to mitochondria in the Raji B-cell line. J Cell Physiol 193:180–186

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Chi ZF, Liu XW, Shan PY, Wang R (2007) Mitochondrial dysfunction and ultrastructural damage in the hippocampus of pilocarpine-induced epileptic rat. Neurosci Lett 411:152–157

    Article  CAS  PubMed  Google Scholar 

  • Giulia C, Daniela L, Giuseppe B, Roland J, Massimo A (2008) The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172:143–157

    Article  CAS  Google Scholar 

  • Gupta RC, Milatovic D, Zivin M, Dettbarn WD (2000) Seizure-induced changes in energy metabolites and effects of N-tert-butyl-alpha-phenylnitrone (PNB) and vitamin E in rats. Pflugers Arch 440:R160–R162

    Article  CAS  PubMed  Google Scholar 

  • Harrison JF, Hollensworth SB, Spitz DR, Copeland WC, Wilson GL, LeDoux SP (2005) Oxidative stress-induced apoptosis in neurons correlates with mitochondrial DNA base excision repair pathway imbalance. Nucl Acids Res 33:4660–4671

    Article  CAS  PubMed  Google Scholar 

  • Imam SZ, Karahalil B, Hogue BA, Souza-Pinto NC, Bohr VA (2006) Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an age-dependent manner. Neurobiol Aging 27:1129–1136

    Article  CAS  PubMed  Google Scholar 

  • Janssen YM, Van Houten B, Borm PJ, Mossman BT (1993) Cell and tissue responses to oxidative damage. Lab Invest 69:261–274

    CAS  PubMed  Google Scholar 

  • Jarrett SG, Liang LP, Hellier JL, Staley KJ, Patel M (2008a) Mitochondrial DNA damage and impaired base excision repair during epileptogenesis. Neurobiol Dis 30:130–138

    Article  CAS  PubMed  Google Scholar 

  • Jarrett SG, Milder JB, Liang LP, Patel M (2008b) The ketogenic diet increases mitochondrial glutathione levels. J Neurochem 106:1044–1051

    Article  CAS  PubMed  Google Scholar 

  • Kisby GE, Lesselroth H, Olivas A, Samson L, Gold B, Tanaka K, Turker MS (2004) Role of nucleotide- and base-excision repair in genotoxin-induced neuronal cell death. DNA Repair (Amst) 3:617–627

    CAS  Google Scholar 

  • Kudin AP, Kudina TA, Seyfried J, Vielhaber S, Beck H, Elger CE, Kunz WS (2002) Seizure-dependent modulation of mitochondrial oxidative phosphorylation in rat hippocampus. Eur J Neurosci 15:1105–1114

    Article  PubMed  Google Scholar 

  • Kunz WS, Kudin AP, Vielhaber S, Blumcke I, Zuschratter W, Schramm J, Beck H, Elger CE (2000) Mitochondrial complex I deficiency in the epileptic focus of patients with temporal lobe epilepsy. Ann Neurol 48:766–773

    Article  CAS  PubMed  Google Scholar 

  • Kwon YS, Park DH, Shin EJ, Kwon MS, Ko KH, Kim WK, Jhoo JH, Jhoo WK, Wie MB, Jung BD, Kim HC (2004) Antioxidant propolis attenuates kainate-induced neurotoxicity via adenosine A1 receptor modulation in the rat. Neurosci Lett 355(3):231–235

    Article  CAS  PubMed  Google Scholar 

  • Larsen NB, Rasmussen M, Rasmussen LJ (2005) Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion 5:89–108

    Article  CAS  PubMed  Google Scholar 

  • Liang LP, Patel M (2004) Mitochondrial oxidative stress and increased seizure susceptibility in Sod2(−/+) mice. Free Radic Biol Med 36:542–554

    Article  CAS  PubMed  Google Scholar 

  • Lin LH, Cao S, Yu L, Cui J, Hamilton WJ, Liu PK (2000) Up-regulation of base excision repair activity for 8-hydroxy-2′-deoxyguanosine in the mouse brain after forebrain ischemia-reperfusion. J Neurochem 74:1098–1105

    Article  CAS  PubMed  Google Scholar 

  • Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891

    Article  CAS  PubMed  Google Scholar 

  • MacGregor DG, Higgins MJ, Jones PA, Maxwell WL, Watson MW, Graham DI, Stone TW (1996) Ascorbate attenuates the systemic kainate-induced neurotoxicity in the rat hippocampus. Brain Res 727:133–144

    Article  CAS  PubMed  Google Scholar 

  • Marianne S, Christoph R (1999) Fragmented mitochondrial DNA is the predominate carrier of oxidized DNA bases. Biochemistry 38:459–464

    Article  Google Scholar 

  • Nakada K, Ono T, Hayashi J (2002) A novel defense system of mitochondria in mice and human subjects for preventing expression of mitochondrial dysfunction by pathogenic mutant mtDNAs. Mitochondrion 2:59–70

    Article  CAS  PubMed  Google Scholar 

  • Nasseh IE, Amado D, Cavalheiro EA, Naffah-Mazzacoratti G, Tengan CH (2006) Investigation of mitochondrial involvement in the experimental model of epilepsy induced by pilocarpine. Epilepsy Res 68:229–239

    Article  CAS  PubMed  Google Scholar 

  • Neema M, Navarro-Quiroga I, Chechlacz M, Gilliams-Francis K, Liu J, Lamonica K, Lin SL, Naegele JR (2005) DNA damage and nonhomologous end joining in excitotoxicity: neuroprotective role of DNA-PKcs in kainic acid-induced seizures. Hippocampus 15:1057–1071

    Article  CAS  PubMed  Google Scholar 

  • Ono T, Isobe K, Nakada K, Hayashi JI (2001) Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat Genet 28:272–275

    Article  CAS  PubMed  Google Scholar 

  • Quach N, Chan T, Lu TA, Schreiber SS, Tan Z (2005) Induction of DNA repair proteins, Ref-1 and XRCC1, in adult rat brain following kainic acid-induced seizures. Brain Res 1042:236–240

    Article  CAS  PubMed  Google Scholar 

  • Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294

    Article  CAS  PubMed  Google Scholar 

  • Rao KS (2007) DNA repair in aging rat neurons. Neuroscience 145:1330–1340

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Nakada K, Hayashi J (2006) Mitochondrial dynamics and aging: mitochondrial interaction preventing individuals from expression of respiratory deficiency caused by mutant mtDNA. Biochim Biophys Acta 1763:473–481

    Article  CAS  PubMed  Google Scholar 

  • Sobol RW, Kartalou M, Almeida KH, Joyce DF, Engelward BP, Horton JK, Prasad R, Samson LD, Wilson SH (2003) Base excision repair intermediates induce p53-independent cytotoxic and genotoxic responses. J Biol Chem 278:39951–39959

    Article  CAS  PubMed  Google Scholar 

  • Spitz DR, Azzam EI, Li JJ, Gius D (2004) Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev 23:311–322

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ, Qi W, Kim SJ, El-Sokkary GH (1998) Melatonin protects hippocampal neurons in vivo against kainic acid-induced damage in mice. J Neurosci Res 54:382–389

    Article  CAS  PubMed  Google Scholar 

  • Tell G, Crivellato E, Pines A, Paron I, Pucillo C, Manzini G, Bandiera A, Kelley MR, Di Loreto C, Damante G (2001) Mitochondrial localization of APE/Ref-1 in thyroid cells. Mutat Res 485:143–152

    CAS  PubMed  Google Scholar 

  • Wallace DC (1992) Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256:628–632

    Article  CAS  PubMed  Google Scholar 

  • Walton M, Lawlor P, Sirimanne E, Williams C, Gluckman P, Dragunow M (1997) Loss of Ref-1 protein expression precedes DNA fragmentation in apoptotic neurons. Brain Res Mol Brain Res 44:167–170

    Article  CAS  PubMed  Google Scholar 

  • Wilson DM III, McNeill DR (2007) Base excision repair and the central nervous system. Neuroscience 145:1187–1200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by a grant from National Natural Science Foundation of China (No. 30870838).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaofu Chi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Han, Y., Xu, J. et al. Mitochondrial DNA Damage and the Involvement of Antioxidant Defense and Repair System in Hippocampi of Rats with Chronic Seizures. Cell Mol Neurobiol 30, 947–954 (2010). https://doi.org/10.1007/s10571-010-9524-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-010-9524-x

Keywords

Navigation