Skip to main content

Advertisement

Log in

Interactions of Prion Protein With Intracellular Proteins: So Many Partners and no Consequences?

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Prion protein (PrP) plays a key role in the pathogenesis of transmissible spongiform encephalopathies (TSEs)—fatal diseases of the central nervous system. Its physiological function as well as exact role in neurodegeneration remain unclear, hence screens for proteins interacting with PrP seem to be the most promising approach to elucidating these issues. PrP is mostly a plasma membrane-anchored extracellular glycoprotein and only a small fraction resides inside the cell, yet the number of identified intracellular partners of PrP is comparable to that of its membranal or extracellular interactors. Since some TSEs are accompanied by significantly increased levels of cytoplasmic PrP and this fraction of the protein has been found to be neurotoxic, it is of particular interest to characterize the intracellular interactome of PrP. It seems reasonable that at elevated cytoplasmic levels, PrP may exert cytotoxic effect by affecting the physiological functions of its intracellular interactors. This review is focused on the cytoplasmic partners of PrP along with possible consequences of their binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

Bcl-2:

B-cell lymphoma 2 protein

BSE:

Bovine spongiform encephalopathy

C1:

N-terminally truncated form of PrP encompassing residues ~110/112–231

C2:

N-terminally truncated form of PrP encompassing residues ~90/91–231

CaMKIIα:

Calcium/calmodulin-dependent protein kinase α type II

CJD:

Creutzfeldt–Jakob disease

CK2:

Casein kinase 2

CtmPrP:

Transmembrane form of PrP with the C-terminus residing in the lumen of ER

CWD:

Chronic wasting disease

cyPrP, cytPrP, cytoPrP:

PrP residing entirely in the cytosol

ER:

Endoplasmic reticulum

FFI:

Fatal familial insomnia

GFAP:

Glial fibrillary acidic protein

GPI:

Glycosylphosphatidylinositol

Grb2:

Growth factor receptor-bound protein 2

GSS:

Gerstmann–Sträussler–Scheinker disease

HEK:

Human embryonic kidney cells

hnRNP:

Heterogeneous nuclear ribonucleoprotein

Hsp:

Heat shock protein

MAPs:

Microtubule-associated proteins

Mgrn:

Mahogunin

NLS:

Nuclear localization signal

NRAGE:

Neurotrophin receptor-interacting MAGE homolog

Nrf2:

Nuclear factor erythroid 2-related factor 2

NtmPrP:

Transmembrane form of PrP with the N-terminus residing in the lumen of ER

OR:

Octapeptide repeats

PK:

Proteinase K

Prnp :

Prion protein gene

PrP:

Prion protein

PrPC :

Cellular form of PrP

PrPSc :

Scrapie form of PrP

rPrP:

Recombinant PrP

SP:

Signal peptide

TM:

Transmembrane domain

TSE:

Transmissible spongiform encephalopathy

References

  • Amos LA, Schlieper D (2005) Microtubules and maps. Adv Protein Chem 71:257–298

    CAS  PubMed  Google Scholar 

  • Atkinson BG, Dean RL, Tomlinson J, Blaker TW (1989) Rapid purification of ferritin from lysates of red blood cells using proteinase-K. Biochem Cell Biol 67:52–57

    CAS  PubMed  Google Scholar 

  • Avila J, Lucas JJ, Perez M, Hernandez F (2004) Role of tau protein in both physiological and pathological conditions. Physiol Rev 84:361–384

    CAS  PubMed  Google Scholar 

  • Basler K, Oesch B, Scott M, Westaway D, Wälchli M, Groth DF, McKinley MP, Prusiner SB, Weissmann C (1986) Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46:417–428

    CAS  PubMed  Google Scholar 

  • Bendheim PE, Brown HR, Rudelli RD, Scala LJ, Goller NL, Wen GY, Kascsak RJ, Cashman NR, Bolton DC (1992) Nearly ubiquitous tissue distribution of the scrapie agent precursor protein. Neurology 42:149–156

    CAS  PubMed  Google Scholar 

  • Berg D, Holzmann C, Riess O (2003) 14-3-3 proteins in the nervous system. Nat Rev Neurosci 4:752–762

    CAS  PubMed  Google Scholar 

  • Bouziane M, Miao F, Ye N, Holmquist G, Chyzak G, O’Connor TR (1998) Repair of DNA alkylation damage. Acta Biochim Pol 45:191–202

    CAS  PubMed  Google Scholar 

  • Bragason BT, Palsdottir A (2005) Interaction of PrP with NRAGE, a protein involved in neuronal apoptosis. Mol Cell Neurosci 29:232–244

    CAS  PubMed  Google Scholar 

  • Brown DR (2000) Altered toxicity of the prion protein peptide PrP106–126 carrying the Ala(117)–>Val mutation. Biochem J 346:785–791

    CAS  PubMed  Google Scholar 

  • Brown DR, Schmidt B, Kretzschmar HA (1998) Prion protein fragment interacts with PrP-deficient cells. J Neurosci Res 52:260–267

    CAS  PubMed  Google Scholar 

  • Brown DR, Wong BS, Hafiz F, Clive C, Haswell SJ, Jones IM (1999) Normal prion protein has an activity like that of superoxide dismutase. Biochem J 344:1–5

    CAS  PubMed  Google Scholar 

  • Büeler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73:1339–1347

    PubMed  Google Scholar 

  • Cañete-Soler R, Reddy KS, Tolan DR, Zhai J (2005) Aldolases A and C are ribonucleolytic components of a neuronal complex that regulates the stability of the light-neurofilament mRNA. J Neurosci 25:4353–4364

    PubMed  Google Scholar 

  • Canton DA, Litchfield DW (2006) The shape of things to come: an emerging role for protein kinase CK2 in the regulation of cell morphology and the cytoskeleton. Cell Signal 18:267–275

    CAS  PubMed  Google Scholar 

  • Capellari S, Zaidi SI, Urig CB, Perry G, Smith MA, Petersen RB (1999) Prion protein glycosylation is sensitive to redox change. J Biol Chem 274:34846–34850

    CAS  PubMed  Google Scholar 

  • Carpenter EM, Goddard JM, Chisaka O, Manley NR, Capecchi MR (1993) Loss of Hox-A1 (Hox-1.6) function results in the reorganization of the murine hindbrain. Development 118:1063–1075

    CAS  PubMed  Google Scholar 

  • Caughey B, Brown K, Raymond GJ, Katzenstein GE, Thresher W (1994) Binding of the protease-sensitive form of PrP (prion protein) to sulfated glycosaminoglycan and Congo red. J Virol 68:2135–2141

    CAS  PubMed  Google Scholar 

  • Chakrabarti O, Hegde RS (2009) Functional depletion of mahogunin by cytosolically exposed prion protein contributes to neurodegeneration. Cell 137:1136–1147

    CAS  PubMed  Google Scholar 

  • Chakrabarti O, Ashok A, Hegde RS (2009) Prion protein biosynthesis and its emerging role in neurodegeneration. Trends Biochem Sci 34:287–295

    CAS  PubMed  Google Scholar 

  • Chen SG, Teplow DB, Parchi P, Teller JK, Gambetti P, Autilio-Gambetti L (1995) Truncated forms of the human prion protein in normal brain and in prion diseases. J Biol Chem 270:19173–19180

    CAS  PubMed  Google Scholar 

  • Chen J, Gao C, Shi Q, Wang G, Lei Y, Shan B, Zhang B, Dong C, Shi S, Wang X, Tian C, Han J, Dong X (2008a) Casein kinase II interacts with prion protein in vitro and forms complex with native prion protein in vivo. Acta Biochim Biophys Sin (Shanghai) 40:1039–1047

    CAS  Google Scholar 

  • Chen JM, Gao C, Shi Q, Shan B, Lei YJ, Dong CF, An R, Wang GR, Zhang BY, Han J, Dong XP (2008b) Different expression patterns of CK2 subunits in the brains of experimental animals and patients with transmissible spongiform encephalopathies. Arch Virol 153:1013–1020

    CAS  PubMed  Google Scholar 

  • Cosseddu GM, Andréoletti O, Maestrale C, Robert B, Ligios C, Piumi F, Agrimi U, Vaiman D (2007) Gene expression profiling on sheep brain reveals differential transcripts in scrapie-affected/not-affected animals. Brain Res 1142:217–222

    CAS  PubMed  Google Scholar 

  • Dandoy-Dron F, Benboudjema L, Guillo F, Jaegly A, Jasmin C, Dormont D, Tovey MG, Dron M (2000) Enhanced levels of scrapie responsive gene mRNA in BSE-infected mouse brain. Brain Res Mol Brain Res 76:173–179

    CAS  PubMed  Google Scholar 

  • Di Fede G, Giaccone G, Limido L, Mangieri M, Suardi S, Puoti G, Morbin M, Mazzoleni G, Ghetti B, Tagliavini F (2007) The epsilon isoform of 14-3-3 protein is a component of the prion protein amyloid deposits of Gerstmann–Sträussler–Scheinker disease. J Neuropathol Exp Neurol 66:124–130

    PubMed  Google Scholar 

  • Dong CF, Shi S, Wang XF, An R, Li P, Chen JM, Wang X, Wang GR, Shan B, Zhang BY, Han J, Dong XP (2008a) The N-terminus of PrP is responsible for interacting with tubulin and fCJD related PrP mutants possess stronger inhibitive effect on microtubule assembly in vitro. Arch Biochem Biophys 470:83–92

    CAS  PubMed  Google Scholar 

  • Dong CF, Wang XF, Wang X, Shi S, Wang GR, Shan B, An R, Li XL, Zhang BY, Han J, Dong XP (2008b) Molecular interaction between prion protein and GFAP both in native and recombinant forms in vitro. Med Microbiol Immunol 197:361–368

    CAS  PubMed  Google Scholar 

  • Dormont D, Delpech B, Delpech A, Courcel MN, Viret J, Markovits P, Court L (1981) Hyperproduction of glial fibrillary acidic protein (GFA) during development of experimental scrapie in mice. C R Seances Acad Sci III 293:53–56

    CAS  PubMed  Google Scholar 

  • Edenhofer F, Rieger R, Famulok M, Wendler W, Weiss S, Winnacker EL (1996) Prion protein PrPc interacts with molecular chaperones of the Hsp60 family. J Virol 70:4724–4728

    CAS  PubMed  Google Scholar 

  • Faas H, Jackson WS, Borkowski AW, Wang X, Ma J, Lindquist S, Jasanoff A (2009) Context-dependent perturbation of neural systems in transgenic mice expressing a cytosolic prion protein. Neuroimage. doi:10.1016/j.neuroimage.2009.10.009

  • Faust M, Montenarh M (2000) Subcellular localization of protein kinase CK2. A key to its function? Cell Tissue Res 301:329–340

    CAS  PubMed  Google Scholar 

  • Ferreira A, Rapoport M (2002) The synapsins: beyond the regulation of neurotransmitter release. Cell Mol Life Sci 59:589–595

    CAS  PubMed  Google Scholar 

  • Fioriti L, Dossena S, Stewart LR, Stewart RS, Harris DA, Forloni G, Chiesa R (2005) Cytosolic prion protein (PrP) is not toxic in N2a cells and primary neurons expressing pathogenic PrP mutations. J Biol Chem 280:11320–11328

    CAS  PubMed  Google Scholar 

  • Gabus C, Derrington E, Leblanc P, Chnaiderman J, Dormont D, Swietnicki W, Morillas M, Surewicz WK, Marc D, Nandi P, Darlix JL (2001) The prion protein has RNA binding and chaperoning properties characteristic of nucleocapsid protein NCP7 of HIV-1. J Biol Chem 276:19301–19309

    CAS  PubMed  Google Scholar 

  • Giorgi A, Di Francesco L, Principe S, Mignogna G, Sennels L, Mancone C, Alonzi T, Sbriccoli M, De Pascalis A, Rappsilber J, Cardone F, Pocchiari M, Maras B, Schininà ME (2009) Proteomic profiling of PrP27–30-enriched preparations extracted from the brain of hamsters with experimental scrapie. Proteomics 9:3802–3814

    CAS  PubMed  Google Scholar 

  • Giubellino A, Burke TR Jr, Bottaro DP (2008) Grb2 signaling in cell motility and cancer. Expert Opin Ther Targets 12:1021–1033

    CAS  PubMed  Google Scholar 

  • Greenberg DA, Jin K, Khan AA (2008) Neuroglobin: an endogenous neuroprotectant. Curr Opin Pharmacol 8:20–24

    CAS  PubMed  Google Scholar 

  • Grenier C, Bissonnette C, Volkov L, Roucou X (2006) Molecular morphology and toxicity of cytoplasmic prion protein aggregates in neuronal and non-neuronal cells. J Neurochem 97:1456–1466

    CAS  PubMed  Google Scholar 

  • Gu Y, Hinnerwisch J, Fredricks R, Kalepu S, Mishra RS, Singh N (2003) Identification of cryptic nuclear localization signals in the prion protein. Neurobiol Dis 12:133–149

    CAS  PubMed  Google Scholar 

  • Hachiya NS, Watanabe K, Sakasegawa Y, Kaneko K (2004a) Microtubules-associated intracellular localization of the NH2-terminal cellular prion protein fragment. Biochem Biophys Res Commun 313:818–823

    CAS  PubMed  Google Scholar 

  • Hachiya NS, Watanabe K, Yamada M, Sakasegawa Y, Kaneko K (2004b) Anterograde and retrograde intracellular trafficking of fluorescent cellular prion protein. Biochem Biophys Res Commun 315:802–807

    CAS  PubMed  Google Scholar 

  • Hajj GN, Lopes MH, Mercadante AF, Veiga SS, da Silveira RB, Santos TG, Ribeiro KC, Juliano MA, Jacchieri SG, Zanata SM, Martins VR (2007) Cellular prion protein interaction with vitronectin supports axonal growth and is compensated by integrins. J Cell Sci 120:1915–1926

    CAS  PubMed  Google Scholar 

  • Han J, Wang X, Yao H, Gao C, Li F, Zhang B, Jiang H, Dong X (2005) Tau-mediated microtubule formation inhibited by prion protein. Neurosci Bull 21:398–403

    CAS  Google Scholar 

  • Han J, Zhang J, Yao H, Wang X, Li F, Chen L, Gao C, Gao J, Nie K, Zhou W, Dong X (2006) Study on interaction between microtubule associated protein tau and prion protein. Sci China C Life Sci 49:473–479

    CAS  PubMed  Google Scholar 

  • Haraguchi T, Fisher S, Olofsson S, Endo T, Groth D, Tarentino A, Borchelt DR, Teplow D, Hood L, Burlingame A, Lycke E, Kobata A, Prusiner SB (1989) Asparagine-linked glycosylation of the scrapie and cellular prion proteins. Arch Biochem Biophys 274:1–13

    CAS  PubMed  Google Scholar 

  • He L, Eldridge AG, Jackson PK, Gunn TM, Barsh GS (2003a) Accessory proteins for melanocortin signaling: attractin and mahogunin. Ann N Y Acad Sci 994:288–298

    CAS  PubMed  Google Scholar 

  • He L, Lu XY, Jolly AF, Eldridge AG, Watson SJ, Jackson PK, Barsh GS, Gunn TM (2003b) Spongiform degeneration in mahoganoid mutant mice. Science 299:710–712

    CAS  PubMed  Google Scholar 

  • Hegde RS, Mastrianni JA, Scott MR, DeFea KA, Tremblay P, Torchia M, DeArmond SJ, Prusiner SB, Lingappa VR (1998) A transmembrane form of the prion protein in neurodegenerative disease. Science 279:827–834

    CAS  PubMed  Google Scholar 

  • Hegde RS, Tremblay P, Groth D, DeArmond SJ, Prusiner SB, Lingappa VR (1999) Transmissible and genetic prion diseases share a common pathway of neurodegeneration. Nature 402:822–826

    CAS  PubMed  Google Scholar 

  • Heske J, Heller U, Winklhofer KF, Tatzelt J (2004) The C-terminal globular domain of the prion protein is necessary and sufficient for import into the endoplasmic reticulum. J Biol Chem 279:5435–5443

    CAS  PubMed  Google Scholar 

  • Hornshaw MP, McDermott JR, Candy JM (1995) Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem Biophys Res Commun 207:621–629

    CAS  PubMed  Google Scholar 

  • Hsich G, Kenney K, Gibbs CJ, Lee KH, Harrington MG (1996) The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N Engl J Med 335:924–930

    CAS  PubMed  Google Scholar 

  • Jackson GS, Murray I, Hosszu LL, Gibbs N, Waltho JP, Clarke AR, Collinge J (2001) Location and properties of metal-binding sites on the human prion protein. Proc Natl Acad Sci USA 98:8531–8535

    CAS  PubMed  Google Scholar 

  • Jiménez-Huete A, Lievens PM, Vidal R, Piccardo P, Ghetti B, Tagliavini F, Frangione B, Prelli F (1998) Endogenous proteolytic cleavage of normal and disease-associated isoforms of the human prion protein in neural and non-neural tissues. Am J Pathol 153:1561–1572

    PubMed  Google Scholar 

  • Jin JK, Choi JK, Lee HG, Kim YS, Carp RI, Choi EK (1999) Increased expression of CaM kinase II alpha in the brains of scrapie-infected mice. Neurosci Lett 273:37–40

    CAS  PubMed  Google Scholar 

  • Jones CE, Abdelraheim SR, Brown DR, Viles JH (2004) Preferential Cu2+ coordination by His96 and His111 induces beta-sheet formation in the unstructured amyloidogenic region of the prion protein. J Biol Chem 279:32018–32027

    CAS  PubMed  Google Scholar 

  • Keshet GI, Bar-Peled O, Yaffe D, Nudel U, Gabizon R (2000) The cellular prion protein colocalizes with the dystroglycan complex in the brain. J Neurochem 75:1889–1897

    CAS  PubMed  Google Scholar 

  • Kim SJ, Hegde RS (2002) Cotranslational partitioning of nascent prion protein into multiple populations at the translocation channel. Mol Biol Cell 13:3775–3786

    CAS  PubMed  Google Scholar 

  • Kim SJ, Rahbar R, Hegde RS (2001) Combinatorial control of prion protein biogenesis by the signal sequence and transmembrane domain. J Biol Chem 276:26132–26140

    CAS  PubMed  Google Scholar 

  • Kim BH, Jun YC, Jin JK, Kim JI, Kim NH, Leibold EA, Connor JR, Choi EK, Carp RI, Kim YS (2007) Alteration of iron regulatory proteins (IRP1 and IRP2) and ferritin in the brains of scrapie-infected mice. Neurosci Lett 422:158–163

    CAS  PubMed  Google Scholar 

  • Koorts AM, Viljoen M (2007) Ferritin and ferritin isoforms I: structure-function relationships, synthesis, degradation and secretion. Arch Physiol Biochem 113:30–54

    CAS  PubMed  Google Scholar 

  • Kristiansen M, Deriziotis P, Dimcheff DE, Jackson GS, Ovaa H, Naumann H, Clarke AR, van Leeuwen FW, Menéndez-Benito V, Dantuma NP, Portis JL, Collinge J, Tabrizi SJ (2007) Disease-associated prion protein oligomers inhibit the 26S proteasome. Mol Cell 26:175–188

    CAS  PubMed  Google Scholar 

  • Kurschner C, Morgan JI (1995) The cellular prion protein (PrP) selectively binds to Bcl-2 in the yeast two-hybrid system. Brain Res Mol Brain Res 30:165–168

    CAS  PubMed  Google Scholar 

  • Lechauve C, Rezaei H, Celier C, Kiger L, Corral-Debrinski M, Noinville S, Chauvierre C, Hamdane D, Pato C, Marden MC (2009) Neuroglobin and prion cellular localization: investigation of a potential interaction. J Mol Biol 388:968–977

    CAS  PubMed  Google Scholar 

  • Lim J, Hao T, Shaw C, Patel AJ, Szabó G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, Barabási AL, Vidal M, Zoghbi HY (2006) A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 125:801–814

    CAS  PubMed  Google Scholar 

  • Lopez CD, Yost CS, Prusiner SB, Myers RM, Lingappa VR (1990) Unusual topogenic sequence directs prion protein biogenesis. Science 248:226–229

    CAS  PubMed  Google Scholar 

  • Lysek DA, Wüthrich K (2004) Prion protein interaction with the C-terminal SH3 domain of Grb2 studied using NMR and optical spectroscopy. Biochemistry 43:10393–10399

    CAS  PubMed  Google Scholar 

  • Ma J, Lindquist S (2001) Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation. Proc Natl Acad Sci USA 98:14955–14960

    CAS  PubMed  Google Scholar 

  • Ma J, Wollmann R, Lindquist S (2002) Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 298:1781–1785

    CAS  PubMed  Google Scholar 

  • Mackenzie A (1983) Immunohistochemical demonstration of glial fibrillary acidic protein in scrapie. J Comp Pathol 93:251–259

    CAS  PubMed  Google Scholar 

  • Mangé A, Crozet C, Lehmann S, Béranger F (2004) Scrapie-like prion protein is translocated to the nuclei of infected cells independently of proteasome inhibition and interacts with chromatin. J Cell Sci 117:2411–2416

    PubMed  Google Scholar 

  • Martins VR, Graner E, Garcia-Abreu J, de Souza SJ, Mercadante AF, Veiga SS, Zanata SM, Neto VM, Brentani RR (1997) Complementary hydropathy identifies a cellular prion protein receptor. Nat Med 3:1376–1382

    CAS  PubMed  Google Scholar 

  • McKinley MP, Bolton DC, Prusiner SB (1983) A protease-resistant protein is a structural component of the scrapie prion. Cell 35:57–62

    CAS  PubMed  Google Scholar 

  • Meggio F, Negro A, Sarno S, Ruzzene M, Bertoli A, Sorgato MC, Pinna LA (2000) Bovine prion protein as a modulator of protein kinase CK2. Biochem J 352:191–196

    CAS  PubMed  Google Scholar 

  • Mei GY, Li Y, Wang GR, Zhang BY, Tian C, Chen C, Zhou RM, Wang X, Li XL, Wang KX, Han J, Dong XP (2009) Molecular interaction between PrP protein and the signal protein 14-3-3 beta. Bing Du Xue Bao 25:208–212

    CAS  PubMed  Google Scholar 

  • Messing A, Brenner M (2003) GFAP: functional implications gleaned from studies of genetically engineered mice. Glia 43:87–90

    PubMed  Google Scholar 

  • Miesbauer M, Rambold AS, Winklhofer KF, Tatzelt J (2009) Targeting of the prion protein to the cytosol: mechanisms and consequences. Curr Issues Mol Biol 12:109–118

    PubMed  Google Scholar 

  • Mironov A Jr, Latawiec D, Wille H, Bouzamondo-Bernstein E, Legname G, Williamson RA, Burton D, DeArmond SJ, Prusiner SB, Peters PJ (2003) Cytosolic prion protein in neurons. J Neurosci 23:7183–7193

    CAS  PubMed  Google Scholar 

  • Mishra RS, Basu S, Gu Y, Luo X, Zou WQ, Mishra R, Li R, Chen SG, Gambetti P, Fujioka H, Singh N (2004) Protease-resistant human prion protein and ferritin are cotransported across Caco-2 epithelial cells: implications for species barrier in prion uptake from the intestine. J Neurosci 24:11280–11290

    CAS  PubMed  Google Scholar 

  • Motohashi H, Yamamoto M (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10:549–557

    CAS  PubMed  Google Scholar 

  • Myer DL, Bahassi el M, Stambrook PJ (2005) The Plk3-Cdc25 circuit. Oncogene 24:299–305

    CAS  PubMed  Google Scholar 

  • Nandi PK (1997) Interaction of prion peptide HuPrP106–126 with nucleic acid. Arch Virol 142:2537–2545

    CAS  PubMed  Google Scholar 

  • Naslavsky N, Stein R, Yanai A, Friedlander G, Taraboulos A (1997) Characterization of detergent-insoluble complexes containing the cellular prion protein and its scrapie isoform. J Biol Chem 272:6324–6331

    CAS  PubMed  Google Scholar 

  • Negro A, Meggio F, Bertoli A, Battistutta R, Sorgato MC, Pinna LA (2000) Susceptibility of the prion protein to enzymic phosphorylation. Biochem Biophys Res Commun 271:337–341

    CAS  PubMed  Google Scholar 

  • Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291–13295

    CAS  PubMed  Google Scholar 

  • Nieznanski K, Nieznanska H, Skowronek KJ, Osiecka KM, Stepkowski D (2005) Direct interaction between prion protein and tubulin. Biochem Biophys Res Commun 334:403–411

    CAS  PubMed  Google Scholar 

  • Nieznanski K, Podlubnaya ZA, Nieznanska H (2006) Prion protein inhibits microtubule assembly by inducing tubulin oligomerization. Biochem Biophys Res Commun 349:391–399

    CAS  PubMed  Google Scholar 

  • Nogales E (2000) Structural insights into microtubule function. Annu Rev Biochem 69:277–302

    CAS  PubMed  Google Scholar 

  • Oesch B, Teplow DB, Stahl N, Serban D, Hood LE, Prusiner SB (1990) Identification of cellular proteins binding to the scrapie prion protein. Biochemistry 29:5848–5855

    CAS  PubMed  Google Scholar 

  • Osiecka KM, Nieznanska H, Skowronek KJ, Karolczak J, Schneider G, Nieznanski K (2009) Prion protein region 23–32 interacts with tubulin and inhibits microtubule assembly. Proteins 77:279–296

    CAS  PubMed  Google Scholar 

  • Pan T, Wong BS, Liu T, Li R, Petersen RB, Sy MS (2002) Cell-surface prion protein interacts with glycosaminoglycans. Biochem J 368:81–90

    CAS  PubMed  Google Scholar 

  • Pinna LA (2002) Protein kinase CK2: a challenge to canons. J Cell Sci 115:3873–3878

    CAS  PubMed  Google Scholar 

  • Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383

    CAS  PubMed  Google Scholar 

  • Prusiner SB, Groth DF, Bolton DC, Kent SB, Hood LE (1984) Purification and structural studies of a major scrapie prion protein. Cell 38:127–134

    CAS  PubMed  Google Scholar 

  • Rambold AS, Miesbauer M, Rapaport D, Bartke T, Baier M, Winklhofer KF, Tatzelt J (2006) Association of Bcl-2 with misfolded prion protein is linked to the toxic potential of cytosolic PrP. Mol Biol Cell 17:3356–3368

    CAS  PubMed  Google Scholar 

  • Rane NS, Yonkovich JL, Hegde RS (2004) Protection from cytosolic prion protein toxicity by modulation of protein translocation. EMBO J 23:4550–4559

    CAS  PubMed  Google Scholar 

  • Richard M, Biacabe AG, Streichenberger N, Ironside JW, Mohr M, Kopp N, Perret-Liaudet A (2003) Immunohistochemical localization of 14.3.3 zeta protein in amyloid plaques in human spongiform encephalopathies. Acta Neuropathol 105:296–302

    CAS  PubMed  Google Scholar 

  • Riek R, Hornemann S, Wider G, Glockshuber R, Wüthrich K (1997) NMR characterization of the full-length recombinant murine prion protein, mPrP(23–231). FEBS Lett 413:282–288

    CAS  PubMed  Google Scholar 

  • Roucou X, Guo Q, Zhang Y, Goodyer CG, LeBlanc AC (2003) Cytosolic prion protein is not toxic and protects against Bax-mediated cell death in human primary neurons. J Biol Chem 278:40877–40881

    CAS  PubMed  Google Scholar 

  • Salehi AH, Roux PP, Kubu CJ, Zeindler C, Bhakar A, Tannis LL, Verdi JM, Barker PA (2000) NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron 27:279–288

    CAS  PubMed  Google Scholar 

  • Salehi AH, Xanthoudakis S, Barker PA (2002) NRAGE, a p75 neurotrophin receptor-interacting protein, induces caspase activation and cell death through a JNK-dependent mitochondrial pathway. J Biol Chem 277:48043–48050

    CAS  PubMed  Google Scholar 

  • Satoh J, Onoue H, Arima K, Yamamura T (2005) The 14-3-3 protein forms a molecular complex with heat shock protein Hsp60 and cellular prion protein. J Neuropathol Exp Neurol 64:858–868

    CAS  PubMed  Google Scholar 

  • Satoh J, Obayashi S, Misawa T, Sumiyoshi K, Oosumi K, Tabunoki H (2009) Protein microarray analysis identifies human cellular prion protein interactors. Neuropathol Appl Neurobiol 35:16–35

    CAS  PubMed  Google Scholar 

  • Schmitt-Ulms G, Hansen K, Liu J, Cowdrey C, Yang J, DeArmond SJ, Cohen FE, Prusiner SB, Baldwin MA (2004) Time-controlled transcardiac perfusion cross-linking for the study of protein interactions in complex tissues. Nat Biotechnol 22:724–731

    CAS  PubMed  Google Scholar 

  • Shpetner HS, Vallee RB (1989) Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59:421–432

    CAS  PubMed  Google Scholar 

  • Sisó S, Puig B, Varea R, Vidal E, Acín C, Prinz M, Montrasio F, Badiola J, Aguzzi A, Pumarola M, Ferrer I (2002) Abnormal synaptic protein expression and cell death in murine scrapie. Acta Neuropathol 103:615–626

    PubMed  Google Scholar 

  • Soane L, Fiskum G (2005) Inhibition of mitochondrial neural cell death pathways by protein transduction of Bcl-2 family proteins. J Bioenerg Biomembr 37:179–190

    CAS  PubMed  Google Scholar 

  • Spielhaupter C, Schätzl HM (2001) PrPC directly interacts with proteins involved in signaling pathways. J Biol Chem 276:44604–44612

    CAS  PubMed  Google Scholar 

  • Stahl N, Borchelt DR, Hsiao K, Prusiner SB (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51:229–240

    CAS  PubMed  Google Scholar 

  • Stahl N, Borchelt DR, Prusiner SB (1990) Differential release of cellular and scrapie prion proteins from cellular membranes by phosphatidylinositol-specific phospholipase C. Biochemistry 29:5405–5412

    CAS  PubMed  Google Scholar 

  • Strom A, Diecke S, Hunsmann G, Stuke AW (2006) Identification of prion protein binding proteins by combined use of far-Western immunoblotting, two dimensional gel electrophoresis and mass spectrometry. Proteomics 6:26–34

    CAS  PubMed  Google Scholar 

  • Sun G, Guo M, Shen A, Mei F, Peng X, Gong R, Guo D, Wu J, Tien P, Xiao G (2005) Bovine PrPC directly interacts with alphaB-crystalline. FEBS Lett 579:5419–5424

    CAS  PubMed  Google Scholar 

  • Szegezdi E, Macdonald DC, Ní Chonghaile T, Gupta S, Samali A (2009) Bcl-2 family on guard at the ER. Am J Physiol Cell Physiol 296:C941–C953

    CAS  PubMed  Google Scholar 

  • Tatzelt J, Maeda N, Pekny M, Yang SL, Betsholtz C, Eliasson C, Cayetano J, Camerino AP, DeArmond SJ, Prusiner SB (1996) Scrapie in mice deficient in apolipoprotein E or glial fibrillary acidic protein. Neurology 47:449–453

    CAS  PubMed  Google Scholar 

  • Thompson RJ, Kynoch PA, Willson VJ (1982) Cellular localization of aldolase C subunits in human brain. Brain Res 232:489–493

    CAS  PubMed  Google Scholar 

  • Turk E, Teplow DB, Hood LE, Prusiner SB (1988) Purification and properties of the cellular and scrapie hamster prion proteins. Eur J Biochem 176:21–30

    CAS  PubMed  Google Scholar 

  • Vana K, Zuber C, Nikles D, Weiss S (2007) Novel aspects of prions, their receptor molecules, and innovative approaches for TSE therapy. Cell Mol Neurobiol 27:107–128

    CAS  PubMed  Google Scholar 

  • Wang XF, Dong CF, Zhang J, Wan YZ, Li F, Huang YX, Han L, Shan B, Gao C, Han J, Dong XP (2008) Human tau protein forms complex with PrP and some GSS- and fCJD-related PrP mutants possess stronger binding activities with tau in vitro. Mol Cell Biochem 310:49–55

    CAS  PubMed  Google Scholar 

  • Wang X, Bowers SL, Wang F, Pu XA, Nelson RJ, Ma J (2009) Cytoplasmic prion protein induces forebrain neurotoxicity. Biochim Biophys Acta 1792:555–563

    CAS  PubMed  Google Scholar 

  • Warner RG, Hundt C, Weiss S, Turnbull JE (2002) Identification of the heparan sulfate binding sites in the cellular prion protein. J Biol Chem 277:18421–18430

    CAS  PubMed  Google Scholar 

  • Weighardt F, Biamonti G, Riva S (1996) The roles of heterogeneous nuclear ribonucleoproteins (hnRNP) in RNA metabolism. Bioessays 18:747–756

    CAS  PubMed  Google Scholar 

  • Weiss S, Proske D, Neumann M, Groschup MH, Kretzschmar HA, Famulok M, Winnacker EL (1997) RNA aptamers specifically interact with the prion protein PrP. J Virol 71:8790–8797

    CAS  PubMed  Google Scholar 

  • Wong WW, Puthalakath H (2008) Bcl-2 family proteins: the sentinels of the mitochondrial apoptosis pathway. IUBMB Life 60:390–397

    CAS  PubMed  Google Scholar 

  • Yedidia Y, Horonchik L, Tzaban S, Yanai A, Taraboulos A (2001) Proteasomes and ubiquitin are involved in the turnover of the wild-type prion protein. EMBO J 20:5383–5391

    CAS  PubMed  Google Scholar 

  • Yehiely F, Bamborough P, Da Costa M, Perry BJ, Thinakaran G, Cohen FE, Carlson GA, Prusiner SB (1997) Identification of candidate proteins binding to prion protein. Neurobiol Dis 3:339–355

    CAS  PubMed  Google Scholar 

  • Yost CS, Lopez CD, Prusiner SB, Myers RM, Lingappa VR (1990) Non-hydrophobic extracytoplasmic determinant of stop transfer in the prion protein. Nature 343:669–672

    CAS  PubMed  Google Scholar 

  • Zanusso G, Petersen RB, Jin T, Jing Y, Kanoush R, Ferrari S, Gambetti P, Singh N (1999) Proteasomal degradation and N-terminal protease resistance of the codon 145 mutant prion protein. J Biol Chem 274:23396–23404

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Hanna Nieznanska for critical reading of the manuscript and helpful comments. This work was supported by a statutory grant to the Nencki Institute of Experimental Biology from the Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Nieznanski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieznanski, K. Interactions of Prion Protein With Intracellular Proteins: So Many Partners and no Consequences?. Cell Mol Neurobiol 30, 653–666 (2010). https://doi.org/10.1007/s10571-009-9491-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-009-9491-2

Keywords