Skip to main content

Advertisement

Log in

Alpha-Tocopherol Decreases Iron-Induced Hippocampal and Nigral Neuron Loss

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

There are many studies about iron-induced neuronal hyperactivity and oxidative stress. Some reports also showed that iron levels rise in the brain in some neurodegenerative diseases such as Parkinson’s (PD) and Alzheimer’s disease (AD). It has been suggested that excessive iron level increases oxidative stress and causes neuronal death. Tocopherols act as a free radical scavenger when phenoxylic head group encounters a free radical. We have aimed to identify the effect of α-tocopherol (Vitamin E) on iron-induced neurotoxicity. For this reason, rats were divided into three groups as control, iron, and iron + α-tocopherol groups. Iron chloride (200 mM in 2.5 μl volume) was injected into brain ventricle of iron and iron + α-tocopherol group rats. Same volume of saline (2.5 μl) was given to the rats belonging to control group. Rats of iron + α-tocopherol group received intraperitoneally (i.p.) α-tocopherol (100 mg/kg/day) for 10 days. After 10 days, rats were perfused intracardially under deep urethane anesthesia. Removed brains were processed using standard histological techniques. The numbers of neurons in hippocampus and substantia nigra of all rats were estimated by stereological techniques. Results of present study show that α-tocopherol decreased hippocampal and nigral neuron loss from 51.7 to 12.1% and 41.6 to 17.8%, respectively. Findings of the present study suggest that α-tocopherol may have neuroprotective effects against iron-induced hippocampal and nigral neurotoxicity and it may have a therapeutic significance for neurodegenerative diseases involved iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amoroso S, Gioielli A, Cataldi M, Di Renzo G, Annunziato L (1999) In the neuronal cell line SH-SY5Y, oxidative stress-induced free radical overproduction causes cell death without any participation of intracellular Ca2+ increase. Biochim Biophys Acta 1452:151–160

    Article  CAS  PubMed  Google Scholar 

  • Behl C, Davis J, Cole GM, Schubert D (1992) Vitamin E protects nerve cells from amyloid h protein toxicity. Biochem Biophys Res Commun 186:944–950

    Article  CAS  PubMed  Google Scholar 

  • Bondy SC, Guo S, Adams JD (1996) Prevention of ethanol-induced changes in reactive oxygen parameters by alpha-tocopherol. Alcohol Alcohol 31:403–410

    CAS  PubMed  Google Scholar 

  • Bostanci MO, Bagirici F (2008) Nitric oxide synthesis inhibition attenuates iron-induced neurotoxicity: a stereological study. Neurotoxicology 29(1):130–135

    Article  CAS  PubMed  Google Scholar 

  • Bostanci MO, Bagirici F, Canan S (2006) A calcium channel blocker flunarizine attenuates the neurotoxic effects of iron. Cell Biol Toxicol 22:119–125

    Article  CAS  PubMed  Google Scholar 

  • Bostanci MO, Bagirici F, Bas O (2008) Role of nitric oxide synthesis inhibitors in iron-induced nigral neurotoxicity: a mechanistic exploration. Toxicol Mech Methods 116:379–384

    Article  CAS  Google Scholar 

  • Burton GW, Ingold KU (1989) Vitamin E as an in vitro and in vivo antioxidant. Ann NY Acad Sci 570:7–22

    Article  CAS  PubMed  Google Scholar 

  • Burton GW, Ingold KU, Foster DO, Cheng SC, Webb A, Hughes L, Lusztyk E (1988) Comparison of free α-tocopherol and α-tocopherol acetate as sources of vitamin E in rats and humans. Lipids 23:834–840

    Article  CAS  PubMed  Google Scholar 

  • Ciani E, Groneng L, Voltattorni M, Rolseth V, Contestabile A, Paulsen RE (1996) Inhibition of free radical production or free radical scavenging protects from the excitotoxic cell death mediated by glutamate in cultures of cerebellar granule neurons. Brain Res 728:1–6

    Article  CAS  PubMed  Google Scholar 

  • Crouzin N, Ferreira MC, Cohen-Solal C, Aimar RF, Vignes M, Guiramand J (2007) α-Tocopherol-mediated long-lasting protection against oxidative damage involves an attenuation of calcium entry through TRP-like channels in cultured hippocampal neurons. Free Radic Biol Med 42:1326–1337

    Article  CAS  PubMed  Google Scholar 

  • Deibel MA, Ehmann WD, Markesbery WR (1996) Copper, iron and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J Neurol Sci 143:137–142

    Article  CAS  PubMed  Google Scholar 

  • Dexter DT, Carayon A, Agid AF, Agid Y, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114:1953–1975

    Article  PubMed  Google Scholar 

  • Engelhart MJ, Geerlings MI, Ruitenberg A, van Swieten JC, Hofman A, Wittenman JCM, Breteler MMB (2002) Dietary intake of antioxidant and risk of Alzheimer’s disease. JAMA 287:3223–3229

    Article  CAS  PubMed  Google Scholar 

  • Ferreira MC, Crouzin N, Barbanel G, Cohen-Solal C, Récasens M, Vignes M, Guiramand J (2005) A transient treatment of hippocampal neurons with alpha-tocopherol induces a long-lasting protection against oxidative damage via a genomic action. Free Radic Biol Med 39:1009–1020

    Article  CAS  Google Scholar 

  • Galbussera A, Tremolizzo L, Brighina L, Testa D, Lovati R, Ferrarese C, Cavaletti G, Filippini G (2006) Vitamin E intake and the quality of life in amyotrophic lateral sclerosis patients: a followup case series study. Neurol Sci 27:190–193

    Article  CAS  PubMed  Google Scholar 

  • Gerlach M, Ben-Shachar D, Riederer P, Youdim MB (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases. J Neurochem 63:793–807

    Article  CAS  PubMed  Google Scholar 

  • Goodman Y, Mattson MP (1994) Secreted forms of β-amyloid precursor protein protect hippocampal neurons against amyloid β-peptide-induced oxidative injury. Exp Neurol 128:1–12

    Article  CAS  PubMed  Google Scholar 

  • Graf M, Ecker D, Horowski R, Kramer B, Riederer P, Gerlach M, Hager C, Ludolph AC, Becker G, Osterhage J, Jost WH, Schrank B, Stein C, Kostopulos P, Lubik S, Wekwerth K, Dengler R, Troeger M, Wuerz A, Hoge A, Schrader C, Schimke N, Krampfl K, Petri S, Zierz S, Eger K, Neudecker S, Traufeller K, Sievert M, Neundorfer B, Hecht M (2005) High-dose vitamin E therapy in amyotrophic lateral sclerosis as add-on therapy to riluzole: a result of placebo controlled double blind study. J Neural Transm 112(5):649–660

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (eds) (1989) Free radicals in biology and medicine. Clarendon Press, Oxford

    Google Scholar 

  • Marino MD, Aksenov MY, Kelly SJ (2004) Vitamin E protects against alcohol-induced cell loss and oxidative stress in the neonatal rat hippocampus. Int J Dev Neurosci 22:363–377

    Article  CAS  PubMed  Google Scholar 

  • Mishima K, Tanaka T, Pu F, Egashira N, Iwasaki K, Hidaka R, Matsunaga K, Takata J, Karube Y, Fujiwara M (2003) Vitamin E isoforms alpha-tocotrienol and gamma-tocopherol prevent cerebral infarction in mice. Neurosci Lett 337:56–60

    Article  CAS  PubMed  Google Scholar 

  • Moos T (2002) Brain iron homeostasis. Dan Med Bull 49:279–301

    CAS  PubMed  Google Scholar 

  • Osakada F, Hashino A, Kume T, Katsuki H, Kaneko S, Akaike A (2003) Neuroprotective effects of α-tocopherol on oxidative stress in rat striatal cultures. Eur J Pharmacol 465:15–22

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in the stereotaxic coordinates, 4th edn. Academic Pres, London

    Google Scholar 

  • Petersen RC, Thomas RG, Grundman M, Bennett D, Doody R, Ferris S (2005) Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med 352:2379–2388

    Article  CAS  PubMed  Google Scholar 

  • Pham DQ, Plakogiannis R (2005) Vitamin E supplementation in Alzheimer’s disease, Parkinson’s disease, tardive dyskinesia, and cataract: Part 2. Ann Pharmacother 39(12):2065–2072

    Article  CAS  PubMed  Google Scholar 

  • Qian ZM, Wang Q (1998) Expression of iron transport proteins and excessive iron accumulation of iron in the brain in neurodegenerative disorders. Brain Res Rev 27:257–267

    Article  CAS  PubMed  Google Scholar 

  • Qian ZM, Wang Q, Pu Y (1997) Brain iron and neurological disorders. Chin Med J 110:455–458

    CAS  PubMed  Google Scholar 

  • Roghani M, Behzadi G (2001) Neuroprotective effect of vitamin E on the early model of Parkinson’s disease in rat: behavioral and histochemical evidence. Brain Res 892:211–217

    Article  CAS  PubMed  Google Scholar 

  • Sagach VF, Scrosati M, Fielding J, Rossoni G, Galli C, Visioli F (2002) The water-soluble vitamin E analogue Trolox protects against ischemia/reperfusion damage in vitro and ex vivo: a comparison with vitamin E. Pharmacol Res 45:435–439

    Article  CAS  PubMed  Google Scholar 

  • Samudralwer DL, Diprete CC, Ni B-F, Ehmann WD, Markesbery WR (1995) Elemental imbalances in the olfactory pathway in Alzheimer’s disease. J Neurol Sci 130:139–145

    Article  Google Scholar 

  • Schmitz C, Hof PR (2005) Design-based stereology in neuroscience. Neuroscience 130:813–831

    Article  CAS  PubMed  Google Scholar 

  • Schubert D, Kimura H, Maher P (1992) Growth factors and vitamin E modify neuronal glutamate toxicity. Proc Natl Acad Sci USA 89:8264–8267

    Article  CAS  PubMed  Google Scholar 

  • Swaiman KF (1991) Hallervorden-Spatz and brain iron metabolism. Arch Neurol 48:1285–1293

    CAS  PubMed  Google Scholar 

  • Zhang B, Tanaka J, Yang L, Yang L, Sakanaka M, Hata R, Maeda N, Mitsuda N (2004) Protective effect of vitamin E against focal brain ischemia and neuronal death through induction of target genes of hypoxia-inducible factor-1. Neuroscience 126:433–440

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by The Research Fund of Ondokuz Mayis University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ömer Bostanci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bostanci, M.Ö., Bas, O. & Bagirici, F. Alpha-Tocopherol Decreases Iron-Induced Hippocampal and Nigral Neuron Loss. Cell Mol Neurobiol 30, 389–394 (2010). https://doi.org/10.1007/s10571-009-9461-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-009-9461-8

Keywords

Navigation