Detection of Calcium Transients in Embryonic Stem Cells and Their Differentiated Progeny

Abstract

A central issue in stem cell biology is the determination of function and activity of differentiated stem cells, features that define the true phenotype of mature cell types. Commonly, physiological mechanisms are used to determine the functionality of mature cell types, including those of the nervous system. Calcium imaging provides an indirect method of determining the physiological activities of a mature cell. Camgaroos are variants of yellow fluorescent protein that act as intracellular calcium sensors in transfected cells. We expressed one version of the camgaroos, Camgaroo-2, in mouse embryonic stem (ES) cells under the control of the CAG promoter system. Under the control of this promoter, Camgaroo-2 fluorescence was ubiquitously expressed in all cell types derived from the ES cells that were tested. In response to pharmacological stimulation, the fluorescence levels in transfected cells correlated with cellular depolarization and hyperpolarization. These changes were observed in both undifferentiated ES cells as well as ES cells that had been neurally induced, including putative neurons that were differentiated from transfected ES cells. The results presented here indicate that Camgaroo-2 may be used like traditional fluorescent proteins to track cells as well as to study the functionality of stem cells and their progeny.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Anderson DJ, Gage FH, Weissman IL (2001) Can stem cells cross lineage boundaries? Nat Med 7(4):393–395. doi:10.1038/86439

    Article  CAS  PubMed  Google Scholar 

  2. Arenas E (2002) Stem cells in the treatment of Parkinson’s disease. Brain Res Bull 57(6):795–808. doi:10.1016/S0361-9230(01)00772-9

    Article  CAS  PubMed  Google Scholar 

  3. Astradsson A, Cooper O, Vinuela A, Isacson O (2008) Recent advances in cell-based therapy for Parkinson disease. Neurosurg Focus 24(3-4):E6. doi:10.3171/FOC/2008/24/3-4/E5

    Article  PubMed  Google Scholar 

  4. Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 168(2):342–357. doi:10.1006/dbio.1995.1085

    Article  CAS  PubMed  Google Scholar 

  5. Baird GS, Zacharias DA, Tsien RY (1999) Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci USA 96(20):11241–11246. doi:10.1073/pnas.96.20.11241

    Article  CAS  PubMed  Google Scholar 

  6. Barth AL (2007) Visualizing circuits and systems using transgenic reporters of neural activity. Curr Opin Neurobiol 17(5):567–571. doi:10.1016/j.conb.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  7. Bauwens CL, Peerani R, Niebruegge S, Woodhouse KA, Kumacheva E, Husain M, Zandstra PW (2008) Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells 26(9):2300–2310. doi:10.1634/stemcells.2008-0183

    Article  PubMed  Google Scholar 

  8. Benninger F, Beck H, Wernig M, Tucker KL, Brustle O, Scheffler B (2003) Functional integration of embryonic stem cell-derived neurons in hippocampal slice cultures. J Neurosci 23(18):7075–7083

    CAS  PubMed  Google Scholar 

  9. Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, Brownell AL, Jenkins BG, Wahlestedt C, Kim KS, Isacson O (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 99(4):2344–2349. doi:10.1073/pnas.022438099

    Article  CAS  PubMed  Google Scholar 

  10. Black IB, Woodbury D (2001) Adult rat and human bone marrow stromal stem cells differentiate into neurons. Blood Cells Mol Dis 27(3):632–636. doi:10.1006/bcmd.2001.0423

    Article  CAS  PubMed  Google Scholar 

  11. Brazelton TR, Rossi FM, Keshet GI, Blau HM (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290(5497):1775–1779. doi:10.1126/science.290.5497.1775

    Article  CAS  PubMed  Google Scholar 

  12. Brownlee C (2000) Cellular calcium imaging: so, what’s new? Trends Cell Biol 10(10):451–457. doi:10.1016/S0962-8924(00)01799-2

    Article  CAS  PubMed  Google Scholar 

  13. Castro RF, Jackson KA, Goodell MA, Robertson CS, Liu H, Shine HD (2002) Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science 297(5585):1299. doi:10.1126/science.297.5585.1299

    Article  CAS  PubMed  Google Scholar 

  14. Cedervall J, Ahrlund-Richter L, Svensson B, Forsgren K, Maurer FH, Vidovska D, Hertegard S (2007) Injection of embryonic stem cells into scarred rabbit vocal folds enhances healing and improves viscoelasticity: short-term results. Laryngoscope 117(11):2075–2081. doi:10.1097/MLG.0b013e3181379c7c

    Article  PubMed  Google Scholar 

  15. Chou CY, Horng LS, Tsai HJ (2001) Uniform GFP-expression in transgenic medaka (Oryzias latipes) at the F0 generation. Transgenic Res 10(4):303–315. doi:10.1023/A:1016671513425

    Article  CAS  PubMed  Google Scholar 

  16. Chung S, Andersson T, Sonntag KC, Bjorklund L, Isacson O, Kim KS (2002) Analysis of different promoter systems for efficient transgene expression in mouse embryonic stem cell lines. Stem Cells 20(2):139–145. doi:10.1634/stemcells.20-2-139

    Article  CAS  PubMed  Google Scholar 

  17. Coutts M, Keirstead HS (2008) Stem cells for the treatment of spinal cord injury. Exp Neurol 209(2):368–377. doi:10.1016/j.expneurol.2007.09.002

    Article  CAS  PubMed  Google Scholar 

  18. Daley GQ, Goodell MA, Snyder EY (2003) Realistic prospects for stem cell therapeutics. Hematology (Am Soc Hematol Educ Program) 1:398–418. doi:10.1182/asheducation-2003.1.398

    Google Scholar 

  19. Fu Y, Wang Y, Evans SM (1998) Viral sequences enable efficient and tissue-specific expression of transgenes in Xenopus. Nat Biotechnol 16(3):253–257. doi:10.1038/nbt0398-253

    Article  CAS  PubMed  Google Scholar 

  20. Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438. doi:10.1126/science.287.5457.1433

    Article  CAS  PubMed  Google Scholar 

  21. Garaschuk O, Griesbeck O, Konnerth A (2007) Troponin C-based biosensors: a new family of genetically encoded indicators for in vivo calcium imaging in the nervous system. Cell Calcium 42(4–5):351–361. doi:10.1016/j.ceca.2007.02.011

    Article  CAS  PubMed  Google Scholar 

  22. Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276(31):29188–29194. doi:10.1074/jbc.M102815200

    Article  CAS  PubMed  Google Scholar 

  23. Harkany T, Andang M, Kingma HJ, Gorcs TJ, Holmgren CD, Zilberter Y, Ernfors P (2004) Region-specific generation of functional neurons from naive embryonic stem cells in adult brain. J Neurochem 88(5):1229–1239. doi:10.1046/j.1471-4159.2003.02243.x

    Article  CAS  PubMed  Google Scholar 

  24. Heim N, Garaschuk O, Friedrich MW, Mank M, Milos RI, Kovalchuk Y, Konnerth A, Griesbeck O (2007) Improved calcium imaging in transgenic mice expressing a troponin C-based biosensor. Nat Methods 4(2):127–129. doi:10.1038/nmeth1009

    Article  CAS  PubMed  Google Scholar 

  25. Hsiao CD, Hsieh FJ, Tsai HJ (2001) Enhanced expression and stable transmission of transgenes flanked by inverted terminal repeats from adeno-associated virus in zebrafish. Dev Dyn 220(4):323–336. doi:10.1002/dvdy.1113

    Article  CAS  PubMed  Google Scholar 

  26. Hua J, Sidhu K (2008) Recent advances in the derivation of germ cells from the embryonic stem cells. Stem Cells Dev 17(3):399–411. doi:10.1089/scd.2007.0225

    Article  PubMed  Google Scholar 

  27. Jiang Y, Henderson D, Blackstad M, Chen A, Miller RF, Verfaillie CM (2003) Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc Natl Acad Sci USA 100(Suppl 1):11854–11860

    Article  CAS  PubMed  Google Scholar 

  28. Kim BJ, Seo JH, Bubien JK, Oh YS (2002) Differentiation of adult bone marrow stem cells into neuroprogenitor cells in vitro. Neuroreport 13(9):1185–1188. doi:10.1097/00001756-200207020-00023

    Article  PubMed  Google Scholar 

  29. Klassen H, Sakaguchi DS, Young MJ (2004) Stem cells and retinal repair. Prog Retin Eye Res 23(2):149–181. doi:10.1016/j.preteyeres.2004.01.002

    Article  CAS  PubMed  Google Scholar 

  30. Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18(6):675–679. doi:10.1038/76536

    Article  CAS  PubMed  Google Scholar 

  31. Levy YS, Merims D, Panet H, Barhum Y, Melamed E, Offen D (2003) Induction of neuron-specific enolase promoter and neuronal markers in differentiated mouse bone marrow stromal cells. J Mol Neurosci 21(2):121–132. doi:10.1385/JMN:21:2:121

    Article  CAS  PubMed  Google Scholar 

  32. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292(5520):1389–1394. doi:10.1126/science.1058866

    Article  CAS  PubMed  Google Scholar 

  33. Mayginnes JP, Reed SE, Berg HG, Staley EM, Pintel DJ, Tullis GE (2006) Quantitation of encapsidated recombinant adeno-associated virus DNA in crude cell lysates and tissue culture medium by quantitative, real-time PCR. J Virol Methods 137(2):193–204. doi:10.1016/j.jviromet.2006.06.011

    Article  CAS  PubMed  Google Scholar 

  34. McDonald JW, Howard MJ (2002) Repairing the damaged spinal cord: a summary of our early success with embryonic stem cell transplantation and remyelination. Prog Brain Res 137:299–309

    Article  PubMed  Google Scholar 

  35. McDonald JW, Liu XZ, Qu Y, Liu S, Mickey SK, Turetsky D, Gottlieb DI, Choi DW (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5(12):1410–1412. doi:10.1038/70986

    Article  CAS  PubMed  Google Scholar 

  36. McKay R (2000) Stem cells–hype and hope. Nature 406(6794):361–364. doi:10.1038/35019186

    Article  PubMed  Google Scholar 

  37. Meyer JS, Katz ML, Maruniak JA, Kirk MD (2004) Neural differentiation of mouse embryonic stem cells in vitro and after transplantation into eyes of mutant mice with rapid retinal degeneration. Brain Res 1014(1–2):131–144. doi:10.1016/j.brainres.2004.04.019

    Article  CAS  PubMed  Google Scholar 

  38. Meyer JS, Katz ML, Maruniak JA, Kirk MD (2006) Embryonic stem cell-derived neural progenitors incorporate into degenerating retina and enhance survival of host photoreceptors. Stem Cells 24(2):274–283. doi:10.1634/stemcells.2005-0059

    Article  PubMed  Google Scholar 

  39. Miyawaki A, Griesbeck O, Heim R, Tsien RY (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci USA 96(5):2135–2140. doi:10.1073/pnas.96.5.2135

    Article  CAS  PubMed  Google Scholar 

  40. Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci USA 98(6):3197–3202. doi:10.1073/pnas.051636098

    Article  CAS  PubMed  Google Scholar 

  41. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19(2):137–141. doi:10.1038/84397

    Article  CAS  PubMed  Google Scholar 

  42. Neuhuber B, Gallo G, Howard L, Kostura L, Mackay A, Fischer I (2004) Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res 77(2):192–204. doi:10.1002/jnr.20147

    Article  CAS  PubMed  Google Scholar 

  43. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108(2):193–199. doi:10.1016/0378-1119(91)90434-D

    Article  CAS  PubMed  Google Scholar 

  44. Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y (1997) ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett 407(3):313–319. doi:10.1016/S0014-5793(97)00313-X

    Article  CAS  PubMed  Google Scholar 

  45. Orlovskaya I, Schraufstatter I, Loring J, Khaldoyanidi S (2008) Hematopoietic differentiation of embryonic stem cells. Methods 45(2):159–167. doi:10.1016/j.ymeth.2008.03.002

    Article  CAS  PubMed  Google Scholar 

  46. Park KI, Ourednik J, Ourednik V, Taylor RM, Aboody KS, Auguste KI, Lachyankar MB, Redmond DE, Snyder EY (2002) Global gene and cell replacement strategies via stem cells. Gene Ther 9(10):613–624. doi:10.1038/sj.gt.3301721

    Article  CAS  PubMed  Google Scholar 

  47. Parker MA, Corliss DA, Gray B, Anderson JK, Bobbin RP, Snyder EY, Cotanche DA (2007) Neural stem cells injected into the sound-damaged cochlea migrate throughout the cochlea and express markers of hair cells, supporting cells, and spiral ganglion cells. Hear Res 232(1–2):29–43. doi:10.1016/j.heares.2007.06.007

    Article  PubMed  Google Scholar 

  48. Pierret C, Spears K, Maruniak JA, Kirk MD (2006) Neural crest as the source of adult stem cells. Stem Cells Dev 15(2):286–291. doi:10.1089/scd.2006.15.286

    Article  CAS  PubMed  Google Scholar 

  49. Pierret C, Spears K, Morrison JA, Maruniak JA, Katz ML, Kirk MD (2007) Elements of a neural stem cell niche derived from embryonic stem cells. Stem Cells Dev 16(6):1017–1026. doi:10.1089/scd.2007.0012

    Article  CAS  PubMed  Google Scholar 

  50. Pologruto TA, Yasuda R, Svoboda K (2004) Monitoring neural activity and [Ca2+] with genetically encoded Ca2+ indicators. J Neurosci 24(43):9572–9579. doi:10.1523/JNEUROSCI.2854-04.2004

    Article  CAS  PubMed  Google Scholar 

  51. Prockop DJ (2003) Further proof of the plasticity of adult stem cells and their role in tissue repair. J Cell Biol 160(6):807–809. doi:10.1083/jcb.200302117

    Article  CAS  PubMed  Google Scholar 

  52. Puceat M (2008) Protocols for cardiac differentiation of embryonic stem cells. Methods 45(2):168–171. doi:10.1016/j.ymeth.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  53. Reed SE, Staley EM, Mayginnes JP, Pintel DJ, Tullis GE (2006) Transfection of mammalian cells using linear polyethylenimine is a simple and effective means of producing recombinant adeno-associated virus vectors. J Virol Methods 138(1–2):85–98. doi:10.1016/j.jviromet.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  54. Robertson EJ (1997) Derivation and maintenance of embryonic stem cell cultures. Methods Mol Biol 75:173–184

    CAS  PubMed  Google Scholar 

  55. Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA (2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 12(11):1259–1268. doi:10.1038/nm1495

    Article  CAS  PubMed  Google Scholar 

  56. Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J, Stahl M, Rogers D (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336:688–690

    Article  CAS  PubMed  Google Scholar 

  57. Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F (2000) Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49(2):157–162. doi:10.2337/diabetes.49.2.157

    Article  CAS  PubMed  Google Scholar 

  58. Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37(2):173–182. doi:10.1016/0165-0270(91)90128-M

    Article  CAS  PubMed  Google Scholar 

  59. Takahashi M, Palmer TD, Takahashi J, Gage FH (1998) Widespread integration and survival of adult-derived neural progenitor cells in the developing optic retina. Mol Cell Neurosci 12(6):340–348. doi:10.1006/mcne.1998.0721

    Article  CAS  PubMed  Google Scholar 

  60. Takahashi A, Camacho P, Lechleiter JD, Herman B (1999) Measurement of intracellular calcium. Physiol Rev 79(4):1089–1125

    CAS  PubMed  Google Scholar 

  61. Tenenbaum L, Peschanski M, Melas C, Rodesh F, Lehtonen E, Stathopoulos A, Velu T, Brotchi J, Levivier M (2004) Efficient early and sustained transduction of human fetal mesencephalon using adeno-associated virus type 2 vectors. Cell Transplant 13(5):565–571. doi:10.3727/000000004783983684

    Article  CAS  PubMed  Google Scholar 

  62. Tsai RY, Kittappa R, McKay RD (2002) Plasticity, niches, and the use of stem cells. Dev Cell 2(6):707–712. doi:10.1016/S1534-5807(02)00195-8

    Article  CAS  PubMed  Google Scholar 

  63. Tullis GE, Shenk T (2000) Efficient replication of adeno-associated virus type 2 vectors: a cis-acting element outside of the terminal repeats and a minimal size. J Virol 74(24):11511–11521. doi:10.1128/JVI.74.24.11511-11521.2000

    Article  CAS  PubMed  Google Scholar 

  64. Van Hoffelen SJ, Young MJ, Shatos MA, Sakaguchi DS (2003) Incorporation of murine brain progenitor cells into the developing mammalian retina. Invest Ophthalmol Vis Sci 44(1):426–434. doi:10.1167/iovs.02-0269

    Article  PubMed  Google Scholar 

  65. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297(5590):2256–2259. doi:10.1126/science.1074807

    Article  CAS  PubMed  Google Scholar 

  66. Wang XL, Jiang XD, Liang PJ (2008) Intracellular calcium concentration changes initiated by N-methyl-d-aspartic acid receptors in retinal horizontal cells. Neuroreport 19(6):675–678. doi:10.1097/WNR.0b013e3282fb7902

    Article  CAS  PubMed  Google Scholar 

  67. Ward CM, Stern PL (2002) The human cytomegalovirus immediate-early promoter is transcriptionally active in undifferentiated mouse embryonic stem cells. Stem Cells 20(5):472–475. doi:10.1634/stemcells.20-5-472

    Article  CAS  PubMed  Google Scholar 

  68. Wobus AM, Kaomei G, Shan J, Wellner MC, Rohwedel J, Ji G, Fleischmann B, Katus HA, Hescheler J, Franz WM (1997) Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J Mol Cell Cardiol 29(6):1525–1539. doi:10.1006/jmcc.1997.0433

    Article  CAS  PubMed  Google Scholar 

  69. Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61(4):364–370. doi:10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  70. Yan X, Liu Y, Han Q, Jia M, Liao L, Qi M, Zhao RC (2007) Injured microenvironment directly guides the differentiation of engrafted Flk-1(+) mesenchymal stem cell in lung. Exp Hematol 35(9):1466–1475. doi:10.1016/j.exphem.2007.05.012

    Article  CAS  PubMed  Google Scholar 

  71. Young MJ, Ray J, Whiteley SJ, Klassen H, Gage FH (2000) Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature dystrophic rats. Mol Cell Neurosci 16(3):197–205. doi:10.1006/mcne.2000.0869

    Article  CAS  PubMed  Google Scholar 

  72. Yu D, Baird GS, Tsien RY, Davis RL (2003) Detection of calcium transients in Drosophila mushroom body neurons with camgaroo reporters. J Neurosci 23(1):64–72

    PubMed  Google Scholar 

  73. Zeng X, Rao MS (2007) Human embryonic stem cells: long term stability, absence of senescence and a potential cell source for neural replacement. Neuroscience 145(4):1348–1358. doi:10.1016/j.neuroscience.2006.09.017

    Article  CAS  PubMed  Google Scholar 

  74. Zeng X, Chen J, Sanchez JF, Coggiano M, Dillon-Carter O, Petersen J, Freed WJ (2003) Stable expression of hrGFP by mouse embryonic stem cells: promoter activity in the undifferentiated state and during dopaminergic neural differentiation. Stem Cells 21(6):647–653. doi:10.1634/stemcells.21-6-647

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Elizabeth Staley for assistance in conducting some of the experiments included in this manuscript. This work was supported by NIH grants NS44494 to GT and NS045813 to MDK.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jason S. Meyer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meyer, J.S., Tullis, G., Pierret, C. et al. Detection of Calcium Transients in Embryonic Stem Cells and Their Differentiated Progeny. Cell Mol Neurobiol 29, 1191 (2009). https://doi.org/10.1007/s10571-009-9413-3

Download citation

Keywords

  • Calcium imaging
  • Stem cells
  • Camgaroo
  • Fluorescent indicators