Cellular and Molecular Neurobiology

, Volume 29, Issue 6–7, pp 981–990 | Cite as

Immunohistochemical Study of Postnatal Neurogenesis After Whole-body Exposure to Electromagnetic Fields: Evaluation of Age- and Dose-Related Changes in Rats

  • Judita OrendáčováEmail author
  • Eniko Račeková
  • Martin Orendáč
  • Marcela Martončíková
  • Kamila Saganová
  • Kamila Lievajová
  • Henrieta Abdiová
  • Ján Labun
  • Ján Gálik
Original Paper


It is well established that strong electromagnetic fields (EMFs) can give rise to acute health effects, such as burns, which can be effectively prevented by respecting exposure guidelines and regulations. Current concerns are instead directed toward the possibility that long-term exposure to weak EMF might have detrimental health effects due to some biological mechanism, to date unknown. (1) The possible risk due to pulsed EMF at frequency 2.45 GHz and mean power density 2.8 mW/cm2 on rat postnatal neurogenesis was studied in relation to the animal’s age, duration of the exposure dose, and post-irradiation survival. (2) Proliferating cells marker, BrdU, was used to map age- and dose-related immunohistochemical changes within the rostral migratory stream (RMS) after whole-body exposure of newborn (P7) and senescent (24 months) rats. (3) Two dose-related exposure patterns were performed to clarify the cumulative effect of EMF: short-term exposure dose, 2 days irradiation (4 h/day), versus long-term exposure dose, 3 days irradiation (8 h/day), both followed by acute (24 h) and chronic (1–4 weeks) post-irradiation survival. (4) We found that the EMF induces significant age- and dose-dependent changes in proliferating cell numbers within the RMS. Our results indicate that the concerns about the possible risk of EMF generated in connection with production, transmission, distribution, and the use of electrical equipment and communication sets are justified at least with regard to early postnatal neurogenesis.


Cumulative effect Non-ionizing radiation Rostral migratory stream Quantitative analysis BrdU immunohistochemistry Newborn Senescent 



This work was supported by the VEGA Grants: 2/0058/08; 2/0092/08; 2/0147/09 and the APVV Grants: 51-0021-05; 51-0314-06.


  1. Ahlbom A, Feychting M (2003) Electromagnetic radiation. Br Med Bull 68:157–165. doi: 10.1093/bmb/ldg030 PubMedCrossRefGoogle Scholar
  2. Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137:433–458. doi: 10.1002/cne.901370404 PubMedCrossRefGoogle Scholar
  3. Bálentová S, Račeková E, Mišúrová E (2006) Cell proliferation in the adult rat rostral migratory stream following exposure to gamma irradiation. Cell Mol Neurobiol 26:1131–1139. doi: 10.1007/s10571-006-9067-3 PubMedCrossRefGoogle Scholar
  4. Bálentová S, Račeková E, Mišúrová E (2007a) Effect of low-dose irradiation on proliferation dynamics in the rostral migratory stream of adult rats. Folia Biol 53:74–78Google Scholar
  5. Bálentová S, Račeková E, Mišúrová E (2007b) Effect of paternal exposure to gamma rays on juvenile rat forebrain. Neurotoxicol Teratol 29:521–526. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  6. Baranski S, Edlwejn Z (1967) Electroencephalographic and morphological investigations on the influence of microwaves on the central nervous system. Acta Physiol Pol 18:517–532PubMedGoogle Scholar
  7. Baranski S, Edlwejn Z (1968) Studies on the combined effect of microwaves and some drugs on bioelectric activity of the rabbit nervous system. Acta Physiol Pol 19:31–41Google Scholar
  8. Cayre M, Malaterre J, Scotto-Lomassese S, Strambi C, Strambi A (2002) The common properties of neurogenesis in the adult brain: from invertebrates to vertebrates. Comp Biochem Physiol B Biochem Mol Biol 132(1):1–15. doi: 10.1016/S1096-4959(01)00525-5 PubMedCrossRefGoogle Scholar
  9. Dasika GK, Lin S-CJ, Zhao S, Sung P, Tomkinson A, Kee EY-H (1999) DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigeneses. Oncogene 18:7883–7899. doi: 10.1038/sj.onc.1203283 PubMedCrossRefGoogle Scholar
  10. Dayer AG, Ford AA, Cleaver KM, Yassaee M, Cameron HA (2003) Short-term and long-term survival of new neurons in the rat dentate gyrus. J Comp Neurol 460:563–572PubMedCrossRefGoogle Scholar
  11. Doetsch F (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13(5):543–550. doi: 10.1016/j.gde.2003.08.012 PubMedCrossRefGoogle Scholar
  12. Doetsch F, Alvarez-Buylla A (1996) Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci USA 93:14895–14900. doi: 10.1073/pnas.93.25.14895 PubMedCrossRefGoogle Scholar
  13. Erenpreisa J, Cragg MS (2001) Mitotic death: a mechanism of survival? A review. Cancer Cell Int 1:1–7. doi: 10.1186/1475-2867-1-1 PubMedCrossRefGoogle Scholar
  14. Goldberg RB (1996) Literature resources for understanding biological effects of electromagnetic fields. Accessed 28 Oct 2008. Part of EMF–Link Accessed 28 Oct 2008
  15. Kirschenbaum B, Goldman SA (1995) Brain-derived neurotrophic factror promotes the survival of neurons arising from the adult-rat forebrain subependymal zone. Proc Natl Acad Sci USA 92:210–214. doi: 10.1073/pnas.92.1.210 PubMedCrossRefGoogle Scholar
  16. Kirschenbaum B, Doetsch F, Lois C, Alvarez-Buylla A (1999) Adult subventricular zone neuronal precursors continue to proliferate and migrate in the absence of the olfactory bulb. J Neurosci 19:2171–2180PubMedGoogle Scholar
  17. Kuhn HG, DickinsonAnson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rats: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033PubMedGoogle Scholar
  18. Leuner B, Kozorovitskiy Y, Gross CG, Gould E (2007) Diminished adult neurogenesis in the marmoset brain precedes old age. Proc Natl Acad Sci USA 104:17169–17173. doi: 10.1073/pnas.0708228104 PubMedCrossRefGoogle Scholar
  19. Lichtenwalner RJ, Forbes ME, Bennett SA, Lynch CD, Sonntag WE, Riddle DR (2001) Intracerebroventricular infusion of insulin-like growth factor-I ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience 107:603–613. doi: 10.1016/S0306-4522(01)00378-5 PubMedCrossRefGoogle Scholar
  20. Lievajová K, Martončíková M, Orendáčová J, Račeková E (2008) Effect of maternal separation on proliferation activity in the rat forebrain. In: Abstracts of 6th international symposium on experimental and clinical neurobiology, September 2008, p 53Google Scholar
  21. Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148. doi: 10.1126/science.8178174 PubMedCrossRefGoogle Scholar
  22. Martens L, DeMoerloose J, DeWagter C, DeZutter D (1995) Calculation of the electromagnetic fields induced in the head of an operator of a cordless telephone. Radio Sci 30:415–420. doi: 10.1029/94RS00508 CrossRefGoogle Scholar
  23. Martončíková M, Račeková E, Orendáčová J (2006) The number of proliferating cells in the rostral migratory stream of rat during the first postnatal month. Cell Mol Neurobiol 26:1451–1459. doi: 10.1007/s10571-006-9039-7 CrossRefGoogle Scholar
  24. Martončíková M, Lievajová K, Orendáčová J, Račeková E (2008) The rostral migratory stream of neonatal and young rats after olfactory stimulation. In: Abstracts of 6th international symposium on experimental and clinical neurobiology, September 2008, p 57Google Scholar
  25. Melo J, Toczyski D (2002) A unified view of the DNA-damage checkpoint. Curr Opin Cell Biol 14:237–245. doi: 10.1016/S0955-0674(02)00312-5 PubMedCrossRefGoogle Scholar
  26. Orendáč M, Feník A, Mojžiš M, Orendáčová J (2005a) Construction of radiofrequency fields whole body exposure system applicable in freely moving rats. In: Abstracts of 5th international symposium on experimental and clinical neurobiology, Folia Med Cassoviensia, p 82Google Scholar
  27. Orendáč M, Feník A, Mojžiš M, Orendáčová J (2005b) Biological effects of electromagnetic radiation on living systems with respect to the brain. Psychiatrie suppl 2:83–85Google Scholar
  28. Orendáčová J, Orendáč M, Račeková E, Maršala J (2007) Neurobiological effects of microwave exposure: a review focused on morphological findings in experimental animals. Arch Ital Biol 145:1–12PubMedGoogle Scholar
  29. Orendáčová J, Račeková E, Orendáč M, Martončíková M, Saganová K, Abdiová H, Mojžiš M, Labun J (2008) Immunohistochemical study of postnatal neurogenesis in the whole-body electromagnetic fields exposed rats. In: Abstracts of 6th international symposium on experimental and clinical neurobiology, September 2008, p 68Google Scholar
  30. Oscar KJ, Hawkins TD (1977) Microwave alteration of the blood-brain barrier system of rats. Brain Res 126:281–293. doi: 10.1016/0006-8993(77)90726-0 PubMedCrossRefGoogle Scholar
  31. Račeková E, Orendáčová J, Martončíková M, Žigová T, Sekerková G, Maršala J (2002) Developmental characteristics in adult forebrain following neonatal unilateral olfactory bulbectomy. Neurosci Res Commun 31:1–9. doi: 10.1002/nrc.10032 CrossRefGoogle Scholar
  32. Račeková E, Orendáčová J, Martončíková M, Vanický I (2003) NADPH-diaphorase positivity in the rostral migratory stream of the developing rat. Dev Brain Res 146:131–134. doi: 10.1016/j.devbrainres.2003.09.014 CrossRefGoogle Scholar
  33. Račeková E, Martončíková M, Mitrušková B, Čížková D, Orendáčová J (2005) Age-related changes of NADPH-Diaphorase positivity in the rat rostral migratory stream. Cell Mol Neurobiol 25:1093–1105. doi: 10.1007/s10571-005-8191-9 PubMedCrossRefGoogle Scholar
  34. Račeková E, Danko J, Martončíková M, Lievajová K, Flešárová S, Orendáčová J (2008) Exogenous factors induced alteration of nitric oxide expression in the rat rostral migratory stream. In: Abstracts of 6th international symposium on experimental and clinical neurobiology, September 2008, p 75Google Scholar
  35. Salford LG, Brun A, Eberhardt J, Malmgren L, Persson B (1992) Electromagnetic field-induced permeability of the blood–brain barrier shown by immunohistochemical methods. In: Norden B, Ramel C (eds) Interaction mechanism of low-level electromagnetic fields in living systems. Oxford University Press, Oxford, pp 251–258Google Scholar
  36. Salford LG, Brun A, Eberhardt J, Persson B (1993) Permeability of the blood–brain barrier induced by 915 MHz electromagnetic radiation, continuous wave and modulated at 8, 16, 50, 200 Hz. Bioelectrochem Bioenerg 30:293–301. doi: 10.1016/0302-4598(93)80088-C Google Scholar
  37. Salford LG, Brun A, Sturesson K, Eberhardt J, Persson B (1994) Permeability of the blood–brain barrier induced by 915 MHz electromagnetic radiation, continuous wave and modulated at 8, 16, 50 and 200 Hz. Microsc Res Tech 27:535–542. doi: 10.1002/jemt.1070270608 PubMedCrossRefGoogle Scholar
  38. Salford LG, Brun A, Eberhardt J, Malmgren L, Persson B (2003) Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect 111:881–883PubMedGoogle Scholar
  39. Sundholm-Peters NL, Yang HKC, Goings GE, Walker AS, Szele FG (2005) Subventricular zone neuroblasts emigrate toward cortical lesions. J Neuropathol Exp Neurol 64:1089–1100. doi: 10.1097/01.jnen.0000190066.13312.8f PubMedCrossRefGoogle Scholar
  40. Tada E, Yang C, Gobbel GT, Lamborn KR, Fike R (1999) Long-term impairment of subependymal repopulation following damage by ionizing irradiation. Exp Neurol 160:66–77. doi: 10.1006/exnr.1999.7172 PubMedCrossRefGoogle Scholar
  41. Tada E, Parent JM, Lowenstein DH, Fike JR (2000) X-irradiation causes a prolonged reduction in cell proliferation in the dentate gyrus of adult rats. Neuroscience 99:33–41. doi: 10.1016/S0306-4522(00)00151-2 PubMedCrossRefGoogle Scholar
  42. Tomori Z, Krekule I, Kubínová L (2001) Disector program for unbiased estimation of particle number, numerical density and mean volume. Image Anal Stereol 20:119–130Google Scholar
  43. Uberti D, Piccioni L, Cadei M, Grigolato P, Rotter V, Memo M (2001) P53 is dispensable for apoptosis but controls neurogenesis fo mouse dentate gyrus cells following gamma-irradiation. Brain Res Mol Brain Res 93:81–89. doi: 10.1016/S0169-328X(01)00180-2 PubMedCrossRefGoogle Scholar
  44. Wang B, Ohyama H, Shang Y, Tanaka K, Aizawa S, Yukawa O, Hayata I (2004) Adaptive response in embryogenesis: existence of two efficient dose-rate ranges for 0.3 Gy of priming irradiation to adapt mouse fetuses. Radiat Res 161:264–272. doi: 10.1667/RR3141 PubMedCrossRefGoogle Scholar
  45. Zigova T, Sanberg PR, Sanchez-Ramos J (2002) Neural stem cells: methods and protocols. In: Humana Press Inc. (ed) Analysis of cell generation in the telencephalic neuroepithelium, New Jersey, pp 101–113Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Judita Orendáčová
    • 1
    Email author
  • Eniko Račeková
    • 1
  • Martin Orendáč
    • 2
  • Marcela Martončíková
    • 1
  • Kamila Saganová
    • 1
  • Kamila Lievajová
    • 1
  • Henrieta Abdiová
    • 4
  • Ján Labun
    • 3
  • Ján Gálik
    • 1
  1. 1.Institute of Neurobiology, Center of ExcellenceSlovak Academy of SciencesKošiceSlovak Republic
  2. 2.Faculty of Electrical Engineering and Informatics, Department of Theoretical Electrotechnics and Electrical MeasurementTechnical University of KošiceKošiceSlovak Republic
  3. 3.Faculty of Aeronautics, Department of AvionicsTechnical University of KošiceKošiceSlovak Republic
  4. 4.Stredná zdravotnícka školaKošiceSlovak Republic

Personalised recommendations