Skip to main content

Advertisement

Log in

Molecular Mechanisms Leading to Neuroprotection/Ischemic Tolerance: Effect of Preconditioning on the Stress Reaction of Endoplasmic Reticulum

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ischemic tolerance can be developed by prior ischemic non-injurious stimulus preconditioning. The molecular mechanisms underlying ischemic tolerance are not yet fully understood. The purpose of this study is to evaluate the effect of preconditioning/preischemia on ischemic brain injury. We examined the endoplasmic reticulum stress response (unfolded protein response (UPR)) by measuring the mRNA and protein levels of specific genes such as ATF6, GRP78, and XBP1 after 15 min 4-VO ischemia and different times of reperfusion (1, 3, and 24 h). The data from the group of naïve ischemic rats were compared with data from the group of preconditioned animals. The results of the experiments showed significant changes in the gene expression at the mRNA level in the all ischemic/reperfusion phases. The influence of preischemia on protein level of XBP was significant in later ischemic times and at 3 h, the reperfusion reached 230% of the controls. The protein levels of GRP78 in preischemic animals showed a significant increase in ischemic and reperfusion times. They exceeded to 50% levels of corresponding naïve ischemic/reperfusion groups. Preconditioning also induced remarkable changes in the levels of ATF6 protein in the ischemic phase (about 170%). The levels of ATF6 remained elevated in earlier reperfusion times (37 and 62%, respectively) and persisted significantly elevated after 24 h of reperfusion. This data suggest that preconditioning paradigm (preischemia) underlies its neuroprotective effect by the attenuation of ER stress response after acute ischemic/reperfusion insult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adachi Y, Yamamoto K, Okada T, Yoshida H, Harada A, Mori K (2008) ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct Funct 33:75–89. doi:10.1247/csf.07044

    Article  PubMed  CAS  Google Scholar 

  • Aoki M, Tamatani M, Taniguchi M, Yamaguchi A, Bando Y, Kasai K, Miyoshi Y, Nakamura Y, Vitek MP, Tohyama M, Tanaka H, Sugimoto H (2001) Hypothermic treatment restores glucose regulated protein 78 (GRP78) expression in ischemic brain. Brain Res Mol Brain Res 95(1–2):117–128. doi:10.1016/S0169-328X(01)00255-8

    Article  PubMed  CAS  Google Scholar 

  • Burda J, Hrehorovska M, García BL, Danielisova V, Cízkova D, Burda R, Nemethova M, Fando JL, Salinas M (2003) Role of protein synthesis in the ischemic tolerance acquisition induced by transient forebrain ischemia in the rat. Neurochem Res 28:1237–1243. doi:10.1023/A:1024232513106

    Article  Google Scholar 

  • Calfon M, Zeng H, Urano F, Till JH, Hubbart SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing XBP-1 mRNA. Nature 415:92–96. doi:10.1038/415092a

    Article  PubMed  CAS  Google Scholar 

  • Coimbra C, Wieloch T (1994) Moderate hypothermia mitigates neuronal damage in the rat brain when initiated several hours following transient cerebral ischemia. Acta Neuropathol 87:325–331. doi:10.1007/BF00313599

    Article  PubMed  CAS  Google Scholar 

  • Danielisová V, Némethová M, Gottlieb M, Burda J (2005) Changes of endogenous antioxidant enzymes during ischemic tolerance acquisition. Neurochem Res 30:559–565. doi:10.1007/s11064-005-2690-4

    Article  PubMed  CAS  Google Scholar 

  • DeGracia DJ, Montie HL (2004) Cerebral ischemia and the unfolded protein response. J Neurochem 91(1):1–8. doi:10.1111/j.1471-4159.2004.02703.x

    Article  PubMed  CAS  Google Scholar 

  • DeGracia DJ, Kumar R, Owen CR, Krause GS, White BC (2002) Molecular pathways of protein synthesis inhibition during brain reperfusion: implications for neuronal survival or death. J Cereb Blood Flow Metab 22:127–141. doi:10.1097/00004647-200202000-00001

    Article  PubMed  CAS  Google Scholar 

  • De la Vega MC, Burda J, Nemethova M, Quevedo C, Alcazar A, Martin ME, Danielisova V, Fando JL, Salinas M (2001) Possible mechanisms involved in the down-regulation of translation during transient global ischaemia in the rat brain. Biochem J 357:819–826. doi:10.1042/0264-6021:3570819

    Article  Google Scholar 

  • Endres M, Engelhardt B, Koistinaho J, Lindvall O, Meairs S, Mohr JP, Planas A, Rothwell N, Schwaninger M, Schwab ME, Vivien D, Wieloch T, Dirnagl U (2008) Improving outcome after stroke: overcoming the translational roadblock. Cerebrovasc Dis 25:268–278. doi:10.1159/000118039

    Article  PubMed  Google Scholar 

  • García L, Burda J, Hrehorovska M, Burda R, Martin E, Salinas M (2004) Ischaemic preconditioning in the rat brain: effect on the activity of several initiation factors, Akt and extracellular signal-regulated protein kinase phosphorylation, and GRP78 and GADD34 expression. J Neurochem 88:136–147

    Article  PubMed  Google Scholar 

  • Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7(6):437–448. doi:10.1038/nrn1927

    Article  PubMed  CAS  Google Scholar 

  • Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic reticulum-resident kinase. Nature 397:271–274. doi:10.1038/16729

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Saito A, Okuno S, Ferrand-Drake M, Dodd RL, Nishi T, Maier CM, Kinouchi H, Chan PH (2003) Oxidative damage to the endoplasmic reticulum is implicated in ischemic neuronal cell death. J Cereb Blood Flow Metab 23:1117–1128. doi:10.1097/01.WCB.0000089600.87125.AD

    Article  PubMed  CAS  Google Scholar 

  • Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787–3799

    PubMed  CAS  Google Scholar 

  • Imaizumi K, Katayama T, Tohyama M (2001) Presenilin and the UPR. Nat Cell Biol 3:E104. doi:10.1038/35074613

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa K, Matsumoto M, Kuwabara K, Tagaya M, Ohtsuki T, Hata R, Ueda H, Handa N, Kimura K, Kamada T (1991) ‘Ischemic tolerance’ phenomenon detected in various brain regions. Brain Res 561:203–211. doi:10.1016/0006-8993(91)91596-S

    Article  PubMed  CAS  Google Scholar 

  • Kudo T, Kanemoto S, Hara H, Morimoto N, Morihara T, Kimura R, Tabira T, Imaizumi K, Takeda M (2008) A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ 15(2):364–375. doi:10.1038/sj.cdd.4402276

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Krause GS, Yoshida H, Mori K, DeGracia DJ (2003) Dysfunction of the unfolded protein response during global brain ischemia and reperfusion. J Cereb Blood Flow Metab 23:462–471. doi:10.1097/00004647-200304000-00010

    Article  PubMed  CAS  Google Scholar 

  • Lehotský J, Murín R, Strapková A, Uríková A, Tatarková Z, Kaplán P (2004) Time course of ischemia/reperfusion-induced oxidative modification of neural proteins in rat forebrain. Gen Physiol Biophys 23(4):401–415

    PubMed  Google Scholar 

  • Morimoto N, Oida Y, Shimazawa M, Miura M, Kudo T, Imaizumi K, Hara H (2007) Involvement of endoplasmic reticulum stress after middle cerebral artery occlusion in mice. Neuroscience 147(4):957–967. doi:10.1016/j.neuroscience.2007.04.017

    Article  PubMed  CAS  Google Scholar 

  • Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    PubMed  CAS  Google Scholar 

  • Ohtsuki T, Reutzler CA, Tasaki K, Hallenbeck JM (1996) Interleukin-1 mediates induction of tolerance to global ischemia in gerbil hippocampal CA1 neurons. J Cereb Blood Flow Metab 16:1137–1142. doi:10.1097/00004647-199611000-00007

    Article  PubMed  CAS  Google Scholar 

  • Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 381:381–389. doi:10.1038/sj.cdd.4401373

    Article  CAS  Google Scholar 

  • Paschen W (2003a) Endoplasmic reticulum: a primary target in various acute disorders and degenerative diseases of the brain. Cell Calcium 34:365–383. doi:10.1016/S0143-4160(03)00139-8

    Article  PubMed  CAS  Google Scholar 

  • Paschen W (2003b) Shutdown of translation: lethal or protective? Unfolded protein response versus apoptosis. J Cereb Blood Flow Metab 23:773–779. doi:10.1097/01.WCB.0000075009.47474.F9

    Article  PubMed  Google Scholar 

  • Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11(5):491–498. doi:10.1002/ana.410110509

    Article  PubMed  CAS  Google Scholar 

  • Qi X, Okuma Y, Hosoi T, Nomura Y (2004) Edaravone protects against hypoxia/ischemia-induced endoplasmic reticulum dysfunction. J Pharmacol Exp Ther 311:388–393. doi:10.1124/jpet.104.069088

    Article  PubMed  CAS  Google Scholar 

  • Schurr A, Reid KH, Tseng MT, West C, Rigor BM (1986) Adaptation of adult brain tissue to anoxia and hypoxia in vitro. Brain Res 374:244–248. doi:10.1016/0006-8993(86)90418-X

    Article  PubMed  CAS  Google Scholar 

  • Shen X, Ellis RE, Lee K, Liu CY, Yang K, Solomon A, Yoshida H, Morimoto R, Kurnit DM, Mori K, Kaufman RJ (2001) Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107:893–903. doi:10.1016/S0092-8674(01)00612-2

    Article  PubMed  CAS  Google Scholar 

  • Sivonová M, Kaplán P, Duracková Z, Dobrota D, Drgová A, Tatarková Z, Pavlíková M, Halasová E, Lehotský J (2008) Time course of peripheral oxidative stress as consequence of global ischaemic brain injury in rats. Cell Mol Neurobiol 28(3):431–441. doi:10.1007/s10571-007-9246-x

    Article  PubMed  CAS  Google Scholar 

  • Thuerauf DJ, Marcinko M, Gude N, Rubio M, Sussman MA, Glembotski CC (2006) Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes. Circ Res 99:275–282. doi:10.1161/01.RES.0000233317.70421.03

    Article  PubMed  CAS  Google Scholar 

  • Urban P, Pavlíková M, Sivonová M, Kaplán P, Tatarková Z, Kaminska B, Lehotský J (2008) Molecular analysis of endoplasmic reticulum stress response after global forebrain ischemia/reperfusion in rats: effect of neuroprotectant simvastatin. Cell Mol Neurobiol 29:181–191

    Google Scholar 

  • Uríková A, Babusíková E, Dobrota D, Drgová A, Kaplán P, Tatarková Z, Lehotský J (2006) Impact of Ginkgo Biloba Extract EGb 761 on ischemia/reperfusion-induced oxidative stress products formation in rat forebrain. Cell Mol Neurobiol 26:1343–1353. doi:10.1007/s10571-006-9030-3

    Article  PubMed  Google Scholar 

  • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891. doi:10.1016/S0092-8674(01)00611-0

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, Mori K (2003) A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 4:265–271. doi:10.1016/S1534-5807(03)00022-4

    Article  PubMed  CAS  Google Scholar 

  • Yu ZW, Lou H, Fu W, Mattson MP (1999) The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp Neurol 155:302–314. doi:10.1006/exnr.1998.7002

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants VEGA 0049/09, MVTS-COST B30, from the Ministry of Education of the Slovak Republic, UK-55-15/07 from Ministry of Health of the Slovak republic and VVCE 0064-07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lehotský.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehotský, J., Urban, P., Pavlíková, M. et al. Molecular Mechanisms Leading to Neuroprotection/Ischemic Tolerance: Effect of Preconditioning on the Stress Reaction of Endoplasmic Reticulum. Cell Mol Neurobiol 29, 917–925 (2009). https://doi.org/10.1007/s10571-009-9376-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-009-9376-4

Keywords

Navigation