Skip to main content
Log in

Peony Glycosides Protect Against Corticosterone-Induced Neurotoxicity in PC12 Cells

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Preclinical and clinical investigations have shown the involvement of dysregulation of hypothalamic–pituitary–adrenal (HPA) axis in the pathogenesis of depression. Hypercortisolemia and the associated hippocampal atrophy were observed in patients with depression, which could be ameliorated by the treatment with antidepressants. Therefore, neuroprotection has been proposed to be one of the acting mechanisms of antidepressant. Previous studies in our laboratory have demonstrated the antidepressant-like activity of total glycosides of peony (TGP) in mice. This study aimed to examine the effect of TGP treatment on corticosterone-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. Treating the cells with corticosterone at 200 μM for 48 h caused apoptotic cell death. The cytotoxicity was associated with the activation of caspase-3 activity and the decrease in the mRNA ratio of bcl-2 to bax. TPG treatment at increasing doses (1–10 mg/l) protected against the corticosterone-induced toxicity in PC12 cells in a dose-dependent manner. The cytoprotection afforded by TGP treatment was associated with the inhibition of caspase-3 activity and the up-regulation of bcl-2/bax mRNA ratio. The anti-apoptotic effect of TGP is therefore likely mediated by the suppression of the mitochondrial pathway leading to apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aihara M, Ida I, Yuuki N, Oshima A, Kumano H, Takahashi K, Fukuda M, Oriuchi N, Endo K, Matsuda H, Mikuni M (2007) HPA axis dysfunction in unmedicated major depressive disorder and its normalization by pharmacotherapy correlates with alteration of neural activity in prefrontal cortex and limbic/paralimbic regions. Psychiatry Res 155:245–256. doi:10.1016/j.pscychresns.2006.11.002

    Article  PubMed  CAS  Google Scholar 

  • Arantes-Gonçalves F, Coelho R (2006) Depression and treatment. Apoptosis, neuroplasticity and antidepressants. Acta Med Port 1:9–20

    Google Scholar 

  • Bachmann RF, Schloesser RJ, Gould TD, Manji HK (2005) Mood stabilizers target cellular plasticity and resilience cascades: implications for the development of novel therapeutics. Mol Neurobiol 32:173–202. doi:10.1385/MN:32:2:173

    Article  PubMed  CAS  Google Scholar 

  • Cheung ZH, Leung MC, Yip HK, Wu W, Siu FK, So KF (2008) A neuroprotective herbal mixture inhibits caspase-3-independent apoptosis in retinal ganglion cells. Cell Mol Neurobiol 1:137–155. doi:10.1007/s10571-007-9175-8

    Article  Google Scholar 

  • Fuchs E, Czéh B, Kole MH, Michaelis T, Lucassen PJ (2004) Alterations of neuroplasticity in depression: the hippocampus and beyond. Eur Neuropsychopharmacol 5:S481–S490. doi:10.1016/j.euroneuro.2004.09.002

    Article  CAS  Google Scholar 

  • Johnson SA, Fournier NM, Kalynchuk LE (2006) Effect of different doses of corticosterone on depression-like behavior and HPA axis responses to a novel stressor. Behav Brain Res 2:280–288. doi:10.1016/j.bbr.2005.11.019

    Article  CAS  Google Scholar 

  • Kosten TA, Galloway MP, Duman RS, Russell DS, D’Sa C (2008) Repeated unpredictable stress and antidepressants differentially regulate expression of the bcl-2 family of apoptotic genes in rat cortical, hippocampal, and limbic brain structures. Neuropsychopharmacology 7:1545–1558. doi:10.1038/sj.npp.1301527

    Article  CAS  Google Scholar 

  • Li YF, Gong ZH, Yang M, Zhao YM, Luo ZP (2003a) Inhibition of the oligosaccharides extracted from Morinda officinalis, a Chinese traditional herbal medicine, on the corticosterone induced apoptosis in PC12 cells. Life Sci 8:933–942. doi:10.1016/S0024-3205(02)02331-7

    Article  Google Scholar 

  • Li YF, Liu YQ, Huang WC, Luo ZP (2003b) Cytoprotective effect is one of common action pathways for antidepressants. Acta Pharmacol Sin 10:996–1000

    Google Scholar 

  • Li YF, Liu YQ, Yang M, Wang HL, Huang WC, Zhao YM, Luo ZP (2004) The cytoprotective effect of inulin-type hexasaccharide extracted from Morinda officinalis on PC12 cells against the lesion induced by corticosterone. Life Sci 13:1531–1538. doi:10.1016/j.lfs.2004.02.029

    Article  CAS  Google Scholar 

  • Li S, Wang C, Wang M, Li W, Matsumoto K, Tang Y (2007) Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms. Life Sci 15:1373–1381. doi:10.1016/j.lfs.2006.12.027

    Article  CAS  Google Scholar 

  • Li J, Shao B, Zhu L, Cui Y, Dong C, Miezan Ezoulin JM, Gao X, Ren Q, Heymans F, Chen H (2008) PMS777, A bis-interacting ligand for PAF receptor antagonism and AChE inhibition, attenuates PAF-induced neurocytotoxicity in SH-SY5Y cells. Cell Mol Neurobiol 1:125–136. doi:10.1007/s10571-007-9190-9

    Article  CAS  Google Scholar 

  • Lucassen PJ, Müller MB, Holsboer F, Bauer J, Holtrop A, Wouda J, Hoogendijk WJ, De Kloet ER, Swaab DF (2001) Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucocorticoid overexposure. Am J Pathol 158:453–468

    PubMed  CAS  Google Scholar 

  • Lucassen PJ, Fuchs E, Czéh B (2004) Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex. Biol Psychiatry 8:789–796. doi:10.1016/j.biopsych.2003.12.014

    Article  CAS  Google Scholar 

  • Lucassen PJ, Heine VM, Muller MB, van der Beek EM, Wiegant VM, De Kloet ER, Joels M, Fuchs E, Swaab DF, Czeh B (2006) Stress, depression and hippocampal apoptosis. CNS Neurol Disord Drug Target 5:531–546. doi:10.2174/187152706778559273

    Article  Google Scholar 

  • Magariños AM, McEwen BS (1995) Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuronscience 1:89–98. doi:10.1016/0306-4522(95)00259-L

    Article  Google Scholar 

  • Manji HK, Duman RS (2001) Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol Bull 35:45–49

    Google Scholar 

  • Mao QQ, Huang Z, Ip SP, Che CT (2008a) Antidepressant-like effect of ethanol extract from Paeonia lactiflora in mice. Phytother Res 22:1496–1499. doi:10.1002/ptr.2519

    Article  PubMed  Google Scholar 

  • Mao QQ, Tsai SH, Ip SP, Che CT (2008b) Antidepressant-like effects of peony glycosides in mice. J Ethnopharmacol 119:272–275. doi:10.1016/j.jep.2008.07.008

    Article  PubMed  CAS  Google Scholar 

  • Murray F, Smith DW, Hutson PH (2008) Chronic low dose corticosterone exposure decreased hippocampal cell proliferation, volume and induced anxiety and depression like behaviours in mice. Eur J Pharmacol 1:115–127. doi:10.1016/j.ejphar.2008.01.014

    Article  CAS  Google Scholar 

  • Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 10:925–935. doi:10.1001/archpsyc.57.10.925

    Article  Google Scholar 

  • Saylam C, Ucerler H, Kitis O, Ozand E, Gonul AS (2006) Reduced hippocampal volume in drug-free depressed patients. Surg Radiol Anat 28:82–87. doi:10.1007/s00276-005-0050-3

    Article  PubMed  Google Scholar 

  • Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY, Uylings HB, Friedman L, Rajkowska G (2004) Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry 56:640–650. doi:10.1016/j.biopsych.2004.08.022

    Article  PubMed  Google Scholar 

  • Wang W, Huang W, Li L, Ai H, Sun F, Liu C, An Y (2008) Morroniside prevents peroxide-induced apoptosis by induction of endogenous glutathione in human neuroblastoma cells. Cell Mol Neurobiol 2:293–305. doi:10.1007/s10571-007-9168-7

    Article  CAS  Google Scholar 

  • Watson S, Mackin P (2007) HPA axis function in mood disorders. Psychiatry 5:166–170. doi:10.1383/psyt.2006.5.5.166

    Article  Google Scholar 

  • Zhong XM, Mao QQ, Huang Z, Liang ZH (2006) The effect of Suyu capsule on nerve cell apoptosis in hippocampus of the depression model rats. Chin J Mod Appl Pharm S2:733–737

    Google Scholar 

  • Zhu MY, Wang WP, Bissette G (2006a) Neuroprotective effects of agmatine against cell damage caused by glucocorticoids in cultured rat hippocampal neurons. Neuroscience 4:2019–2027. doi:10.1016/j.neuroscience.2006.05.011

    Article  CAS  Google Scholar 

  • Zhu W, Ma S, Qu R, Kang D (2006b) Antidepressant-like effect of saponins extracted from Chaihu-jia-longgu-muli-tang and its possible mechanism. Life Sci 8:749–756. doi:10.1016/j.lfs.2006.02.015

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by Direct Grant for Research from the Chinese University of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siu-Po Ip.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, QQ., Ip, SP., Ko, KM. et al. Peony Glycosides Protect Against Corticosterone-Induced Neurotoxicity in PC12 Cells. Cell Mol Neurobiol 29, 643–647 (2009). https://doi.org/10.1007/s10571-009-9357-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-009-9357-7

Keywords

Navigation