Cellular and Molecular Neurobiology

, Volume 29, Issue 1, pp 55–67 | Cite as

DIXDC1 Promotes Retinoic Acid-Induced Neuronal Differentiation and Inhibits Gliogenesis in P19 Cells

  • Xiao-Tang Jing
  • Hai-Tao Wu
  • Yan Wu
  • Xin Ma
  • Shu-Hong Liu
  • Yan-Rui Wu
  • Xue-Feng Ding
  • Xiao-Zhong Peng
  • Bo-Qin Qiang
  • Jian-Gang Yuan
  • Wen-Hong Fan
  • Ming Fan
Original Paper

Abstract

Human DIXDC1 is a member of Dishevelled-Axin (DIX) domain containing gene family which plays important roles in Wnt signaling and neural development. In this report, we first confirmed that expression of Ccd1, a mouse homologous gene of DIXDC1, was up-regulated in embryonic developing nervous system. Further studies showed that Ccd1 was expressed specifically in neurons and colocalized with early neuronal marker Tuj1. During the aggregation induced by RA and neuronal differentiation of embryonic carcinoma P19 cells, expressions of Ccd1 as well as Wnt-1 and N-cadherin were dramatically increased. Stable overexpression of DIXDC1 in P19 cells promoted the neuronal differentiation. P19 cells overexpressing DIXDC1 but not the control P19 cells could differentiate into Tuj1 positive cells with RA induction for only 2 days. Meanwhile, we also found that overexpression of DIXDC1 facilitated the expression of Wnt1 and bHLHs during aggregation and differentiation, respectively, while inhibited gliogenesis by down-regulating the expression of GFAP in P19 cells. Thus, our finding suggested that DIXDC1 might play an important role during neurogenesis, overexpression of DIXDC1 in embryonic carcinoma P19 cells promoted neuronal differentiation, and inhibited gliogenesis induced by retinoic acid.

Keywords

DIXDC1 Ccd1 P19 Cells Retinoic acid Neuronal differentiation Gliogenesis 

Supplementary material

10571_2008_9295_MOESM1_ESM.eps (162 kb)
MOESM1 [Identification of the expression of Ccd1 in mouse multiple tissues by Western blot. Nine adult mice tissues were isolated and disassociated with lysis buffer. Expression of Ccd1 was detected by Western blot analysis. A major band about 53 kDa and a weak band about 40 kDa were both detected which appeared to correspond to Ccd1B and Ccd1C protein, respectively.] (EPS 162 kb)
10571_2008_9295_MOESM2_ESM.eps (310 kb)
MOESM2 [Overexpression of DIXDC1 facilitates the expression of Wnt1a during RA-induced aggregation in P19 cells. Two selected DIXDC1 overexpression clones and pcDNA4-P19 control cells were induced with RA for 4 days to aggregate. RNA at different aggregation stages is isolated and analyzed. RNA expression of exogenous DIXDC1, endogenous Ccd1, and Wnt1a were detected by reverse transcription PCR. Besides, Zeocin resistance gene contained in pcDNA4 vector was also amplified to confirm the positive clones.] (EPS 310 kb)

References

  1. Andrews PA (1984) Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev Biol 103:285–293. doi:10.1016/0012-1606(84)90004-6 PubMedCrossRefGoogle Scholar
  2. Bain G, Ray WJ, Yao M et al (1996) Retinoic acid promotes neural and represses mesodermal gene expression in mouse embryonic stem cells in culture. Biochem Biophys Res Commun 223:691–694. doi:10.1006/bbrc.1996.0957 PubMedCrossRefGoogle Scholar
  3. Bally-Cuif L, Wassef M (1995) Determination events in the nervous system of the vertebrate embryo. Curr Opin Genet Dev 5:450–458. doi:10.1016/0959-437X(95)90048-L PubMedCrossRefGoogle Scholar
  4. Conlon RA, Rossant J (1992) Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo. Development 116:357–368PubMedGoogle Scholar
  5. Farah M, Olson J, Sucic H et al (2000) Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 127:693–702PubMedGoogle Scholar
  6. Gao X, Bian W, Yang J et al (2001) A role of N-cadherin in neuronal differentiation of embryonic carcinoma P19 cells. Biochem Biophys Res Commun 284:1098–1103. doi:10.1006/bbrc.2001.5089 PubMedCrossRefGoogle Scholar
  7. Hamada-Kanazawa M, Ishikawa K, Nomoto K et al (2004) Sox6 overexpression causes cellular aggregation and the neuronal differentiation of P19 embryonic carcinoma cells in the absence of retinoic acid. FEBS Lett 560:192–198. doi:10.1016/S0014-5793(04)00086-9 PubMedCrossRefGoogle Scholar
  8. Jones-Villeneuve EM, McBurney MW, Rogers KA et al (1982) Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J Cell Biol 94:253–262. doi:10.1083/jcb.94.2.253 PubMedCrossRefGoogle Scholar
  9. Lo LC, Johnson JE, Wuenschell CW et al (1991) Mammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells. Genes Dev 5:1524–1537. doi:10.1101/gad.5.9.1524 PubMedCrossRefGoogle Scholar
  10. Ma Q, Kintner C, Anderson DJ (1996) Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87:43–52. doi:10.1016/S0092-8674(00)81321-5 PubMedCrossRefGoogle Scholar
  11. MacPherson PA, McBurney MW (1995) P19 embryonal carcinoma cells: a source of cultured neurons amenable to genetic manipulation. Methods 7:238–252. doi:10.1006/meth.1995.1029 CrossRefGoogle Scholar
  12. Maden M (2001) Role and distribution of retinoic acid during CNS development. Int Rev Cytol 209:1–77. doi:10.1016/S0074-7696(01)09010-6 PubMedCrossRefGoogle Scholar
  13. McBurney MW, Jones-Villeneuve EM, Edwards MK et al (1982) Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line. Nature 299:165–167. doi:10.1038/299165a0 PubMedCrossRefGoogle Scholar
  14. Nieto M, Schuurmans C, Britz O et al (2001) Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29:401–413. doi:10.1016/S0896-6273(01)00214-8 PubMedCrossRefGoogle Scholar
  15. Rosner MH, Vigano MA, Ozato K et al (1990) A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345:686–692. doi:10.1038/345686a0 PubMedCrossRefGoogle Scholar
  16. Shiomi K, Uchida H, Keino-Masu K et al (2003) Ccd1, a novel protein with a DIX domain, is a positive regulator in the Wnt signaling during zebrafish neural patterning. Curr Biol 13:73–77. doi:10.1016/S0960-9822(02)01398-2 PubMedCrossRefGoogle Scholar
  17. Shiomi K, Kanemoto M, Keino-Masu K et al (2005) Identification and differential expression of multiple isoforms of mouse coiled-coil-DIX1 (Ccd1), a positive regulator of Wnt signaling. Brain Res Mol Brain Res 135:169–180. doi:10.1016/j.molbrainres.2004.12.002 PubMedCrossRefGoogle Scholar
  18. Sidell N, Altman A, Haussler MR et al (1983) Effects of retinoic acid (RA) on the growth and phenotypic expression of several human neuroblastoma cell lines. Exp Cell Res 148:21–30. doi:10.1016/0014-4827(83)90184-2 PubMedCrossRefGoogle Scholar
  19. Skerjanc IS, Wilton S (2000) Myocyte enhancer factor 2C upregulates MASH-1 expression and induces neurogenesis in P19 cells. FEBS Lett 472:53–56. doi:10.1016/S0014-5793(00)01438-1 PubMedCrossRefGoogle Scholar
  20. Sun Y, Nadal-Vicens M, Misono S et al (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104:365–376. doi:10.1016/S0092-8674(01)00224-0 PubMedCrossRefGoogle Scholar
  21. Tang K, Yang J, Gao X et al (2002) Wnt-1 promotes neuronal differentiation and inhibits gliogenesis in P19 cells. Biochem Biophys Res Commun 293:167–173. doi:10.1016/S0006-291X(02)00215-2 PubMedCrossRefGoogle Scholar
  22. Tomita K, Moriyoshi K, Nakanishi S et al (2000) Mammalian achaete-scute and atonal homologs regulate neuronal versus glial fate determination in the central nervous system. EMBO J 19:5460–5472. doi:10.1093/emboj/19.20.5460 PubMedCrossRefGoogle Scholar
  23. Wang X, Zheng L, Zeng Z et al (2006) DIXDC1 isoform, l-DIXDC1, is a novel filamentous actin-binding protein. Biochem Biophys Res Commun 347:22–30. doi:10.1016/j.bbrc.2006.06.050 PubMedCrossRefGoogle Scholar
  24. Wilson PA, Hemmati-Brivanlou A (1995) Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376:331–333. doi:10.1038/376331a0 PubMedCrossRefGoogle Scholar
  25. Wodarz A, Nusse R (1998) Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14:59–88. doi:10.1146/annurev.cellbio.14.1.59 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Xiao-Tang Jing
    • 1
  • Hai-Tao Wu
    • 1
  • Yan Wu
    • 1
  • Xin Ma
    • 1
  • Shu-Hong Liu
    • 1
  • Yan-Rui Wu
    • 1
  • Xue-Feng Ding
    • 1
  • Xiao-Zhong Peng
    • 2
  • Bo-Qin Qiang
    • 2
  • Jian-Gang Yuan
    • 2
  • Wen-Hong Fan
    • 1
  • Ming Fan
    • 1
  1. 1.Department of Brain Protection & Plasticity ResearchBeijing Institute of Basic Medical SciencesBeijingPeople’s Republic of China
  2. 2.State Key Lab of Biochemistry & Molecular Biology, Institute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople’s Republic of China

Personalised recommendations