Skip to main content
Log in

Mitochondrial Oxidative Stress and Dysfunction in Rat Brain Induced by Carbofuran Exposure

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Repeated low-dose exposure to carbofuran exerts its neurotoxic effects by non-cholinergic mechanisms. Emerging evidence indicates that oxidative stress plays an important role in carbofuran neurotoxicity after sub-chronic exposure. The purpose of the present study is to evaluate the role of mitochondrial oxidative stress and dysfunction as a primary event responsible for neurotoxic effects observed after sub-chronic carbofuran exposure. Carbofuran was administered to rats at a dose of 1 mg/kg orally for a period of 28 days. There was a significant inhibition in the activity of acetylcholinesterase (66.6%) in brain samples after 28 days of carbofuran exposure. Mitochondrial respiratory chain functions were assessed in terms of MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) reduction and activity of succinate dehydrogenase in isolated mitochondria. It was observed that carbofuran exposure significantly inhibited MTT reduction (31%) and succinate dehydrogenase activity (57%). This was accompanied by decrease in low-molecular weight thiols (66.6%) and total thiols (37.4%) and an increase in lipid peroxidation (43.7%) in the mitochondria isolated from carbofuran-exposed rat brain. The changes in mitochondrial oxidative stress and functions were associated with impaired cognitive and motor functions in the animals exposed to carbofuran as compared to the control animals. Based on these results, it is clear that carbofuran exerts its neurotoxicity by impairing mitochondrial functions leading to oxidative stress and neurobehavioral deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barlow BK, Lee DW, Cory-Slechta DA, Opanashuk LA (2005) Modulation of antioxidant defense systems by the environmental pesticide maneb in dopaminergic cells. NeuroToxicology 26:63–75

    Article  PubMed  CAS  Google Scholar 

  • Bustamante J, Di Libero E, Fernandez-Cobo M, Monti N, Cadenas E, Boveris A (2004) Kinetic analysis of thapsigargin-induced thymocyte apoptosis. Free Radic Biol Med 37:1490–1498

    Article  PubMed  CAS  Google Scholar 

  • Cartmell SM, Gelgor L, Mitchell D (1991) A revised rotarod procedure for measuring the effect of antinociceptive drugs on motor function in the rat. J Pharmacol Methods 26:149–159

    Article  PubMed  CAS  Google Scholar 

  • Davis W Jr, Ronai Z, Tew KD (2001) Cellular thiols and reactive oxygen species in drug-induced apoptosis. J Pharmacol Exp Ther 296:1–6

    PubMed  CAS  Google Scholar 

  • Domico LM, Zeevalk GD, Bernard LP, Cooper KR (2006) Acute neurotoxic effects of mancozeb and maneb in mesencephalic neuronal cultures are associated with mitochondrial dysfunction. NeuroToxicology 27:816–825

    Article  PubMed  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  • Farage-Elawar M (1989) Enzyme and behavioral changes in young chicks as a result of carbaryl treatment. J Toxicol Environ Health 26:119–131

    Article  PubMed  CAS  Google Scholar 

  • Farage-Elawar M, Blaker WD (1992) Chick embryo exposure to carbamates alters neurochemical parameters and behavior. J Appl Toxicol 12:421–426

    Article  PubMed  CAS  Google Scholar 

  • Fukuto TR (1990) Mechanism of action of organophosphorus and carbamate insecticides. Environ Health Perspect 87:245–254

    Article  PubMed  CAS  Google Scholar 

  • Gogvadze V, Zhivotovsky B (2007) Alteration of mitochondrial function and cell sensitization to death. J Bioenerg Biomembr 39:23–30

    Article  PubMed  CAS  Google Scholar 

  • Gupta RC (2004) Brain regional heterogeneity and toxicological mechanisms of organophosphates and carbamates. Toxicol Mech Methods 14:103–143

    Article  CAS  PubMed  Google Scholar 

  • Gupta RC, Goad JT (2000) Role of high-energy phosphates and their metabolites in protection of carbofuran-induced biochemical changes in diaphragm muscle by memantine. Arch Toxicol 74:13–20

    Article  PubMed  CAS  Google Scholar 

  • Gupta RC, Goad JT, Kadel WL (1991) Carbofuran-induced alterations (in vivo) in high-energy phosphates, creatine kinase (CK) and CK isoenzymes. Arch Toxicol 65:304–310

    Article  PubMed  CAS  Google Scholar 

  • Gupta RC, Milatovic D, Dettbarn WD (2001) Nitric oxide modulates high-energy phosphates in brain regions of rats intoxicated with diisopropylphosphorofluoridate or carbofuran: prevention by N-tert-butyl-alpha-phenylnitrone or vitamin E. Arch Toxicol 75:346–356

    Article  PubMed  CAS  Google Scholar 

  • Gupta RC, Milatovic S, Dettbarn WD, Aschner M, Milatovic D (2007) Neuronal oxidative injury and dendritic damage induced by carbofuran: protection by memantine. Toxicol Appl Pharmacol 219:97–105

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  PubMed  CAS  Google Scholar 

  • Hussain M, Yoshida K, Atiemo M, Johnston D (1990) Occupational exposure of grain farmers to carbofuran. Arch Environ Contam Toxicol 19:197–204

    Article  PubMed  CAS  Google Scholar 

  • Jocelyn PC, Dickson J (1980) Glutathione and the mitochondrial reduction of hydroperoxides. Biochim Biophys Acta Bioenerg 590:1–12

    Article  CAS  Google Scholar 

  • Kamboj A, Kiran R, Sandhir R (2006) Carbofuran-induced neurochemical and neurobehavioral alterations in rats: attenuation by N-acetylcysteine. Exp Brain Res 170:567–575

    Article  PubMed  CAS  Google Scholar 

  • Kaur M, Sandhir R (2006) Comparative effects of acute and chronic carbofuran exposure on oxidative stress and drug-metabolizing enzymes in liver. Drug Chem Toxicol 29:415–421

    Article  PubMed  CAS  Google Scholar 

  • King TE, Ohnishi T, Winter DB, Wu JT (1976) Biochemical and EPR probes for structure-function studies of iron sulfur centers of succinate dehydrogenase. Adv Exp Med Biol 74:182–227

    PubMed  CAS  Google Scholar 

  • Lash LH (2006) Mitochondrial glutathione transport: physiological, pathological and toxicological implications. Chem Biol Interact 163:54–67

    Article  PubMed  CAS  Google Scholar 

  • Lessenger JE, Reese BE (1999) Rational use of cholinesterase activity testing in pesticide poisoning. J Am Board Fam Pract 12:307–314

    PubMed  CAS  Google Scholar 

  • Leuner K, Hauptmann S, Abdel-Kader R, Scherping I, Keil U, Strosznajder JB, Eckert A, Muller WE (2007) Mitochondrial dysfunction: the first domino in brain aging and Alzheimer’s disease? Antioxid Redox Signal 9:1659–1675

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Peterson DA, Kimura H, Schubert D (1997) Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 69:581–593

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Liu IY, Bi X, Thompson RF, Doctrow SR, Malfroy B, Baudry M (2003) Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc Natl Acad Sci USA 100:8526–8531

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Meister A, Anderson ME (1983). Glutathione. Annu Rev Biochem 52:711–760

    Article  PubMed  CAS  Google Scholar 

  • Moreno AJM, Serafim TL, Oliveira PJ, Madeira VMC (2007) Inhibition of mitochondrial bioenergetics by carbaryl is only evident for higher concentrations – relevance for carbaryl toxicity mechanisms. Chemosphere 66:404–411

    Article  PubMed  CAS  Google Scholar 

  • Moretto A (1998) Experimental and clinical toxicology of anticholinesterase agents. Toxicol Lett 102–103:509–513

    Article  PubMed  Google Scholar 

  • Nakagawa Y, Nakajima K, Suzuki T (2004) Chlorpropham induces mitochondrial dysfunction in rat hepatocytes. Toxicology 200:123–133

    Article  PubMed  CAS  Google Scholar 

  • Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:C670–686

    Article  PubMed  CAS  Google Scholar 

  • Ningaraj NS, Schloss JV, Williams TD, Faiman MD (1998) Glutathione carbamoylation with S-methyl N,N-diethylthiolcarbamate sulfoxide and sulfone. Mitochondrial low Km aldehyde dehydrogenase inhibition and implications for its alcohol-deterrent action. Biochem Pharmacol 55:749–756

    Article  PubMed  CAS  Google Scholar 

  • Papa S (1996) Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications. Biochim Biophys Acta Bioenerg 1276:87–105

    Article  Google Scholar 

  • Rai DK, Sharma B (2007) Carbofuran-induced oxidative stress in mammalian brain. Mol Biotechnol 37:66–71

    Article  PubMed  CAS  Google Scholar 

  • Ravindranath V, Reed DJ (1990) Glutathione depletion and formation of glutathione-protein mixed disulfide following exposure of brain mitochondria to oxidative stress. Biochem Biophys Res Commun 169:1075–1079

    Article  PubMed  CAS  Google Scholar 

  • Roubertoux PL, Sluyter F, Carlier M, Marcet B, Maarouf-Veray F, Cherif C, Marican C, Arrechi P, Godin F, Jamon M, Verrier B, Cohen-Salmon C (2003) Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nat Genet 35:65–69

    Article  PubMed  CAS  Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  PubMed  CAS  Google Scholar 

  • Stahl WL, Smith JC, Napolitano LM, Basford RE (1963) Brain mitochondria. I. Isolation of bovine brain mitochondria. J Cell Biol 19:293–307

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow RH (2007) Treating neurodegeneration by modifying mitochondria:potential solutions to a “complex” problem. Antioxid Redox Signal 9:1591–1603

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto Y (1997) Apoptosis and necrosis: intracellular ATP level as a determinant for cell death modes. Cell Death Differ 4:429–434

    Article  PubMed  CAS  Google Scholar 

  • Wills ED (1966) Mechanisms of lipid peroxide formation in animal tissues. Biochem J 99:667–676

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat Sandhir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamboj, S.S., Kumar, V., Kamboj, A. et al. Mitochondrial Oxidative Stress and Dysfunction in Rat Brain Induced by Carbofuran Exposure. Cell Mol Neurobiol 28, 961–969 (2008). https://doi.org/10.1007/s10571-008-9270-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-008-9270-5

Keywords

Navigation