Skip to main content
Log in

Effects of Phytoestrogen on Mitochondrial Structure and Function of Hippocampal CA1 Region of Ovariectomized Rats

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The present study was undertaken to evaluate whether estrogen deprivation might lead to mitochondrial alteration of hippocampal neurons of ovariectomized (OVX) rats, and to evaluate the protective effect of estrogen and phytoestrogen on the mitochondrial alteration. First, OVX rats were used to mimic the pathologic changes of neurodegeneration of postmenopausal female, and we looked into the alteration of the mitochondrial ultrastructure and ATP content of hippocampal CA1 region after ovariectomy on different phase by transmission electron microscope (TEM) and reversed-phase high-performance liquid chromatography (HPLC), and found the best phase points of the alteration of the mitochondrial ultrastructure and ATP content. Next, estrogen and phytoestrogen were administered to the OVX rats for the protective effects on the mitochondrial ultrastructure and ATP content. Meanwhile, the density, size, shape, and distribution parameters of mitochondrial ultrastructure were analyzed according to the morphometry principle. The experimental results presented that (1) The alteration of mitochondrial ultrastructure elicited by ovariectomy worsened with the days going on, and the changes were the most noteworthy in volume density (Vv), average surface area (S), specific surface area (δ), and particle dispersity (Cλz) on 12th day (P < 0.05 or P < 0.01). Moreover, there was no statistical significance of the numerical density (Nv) among the five groups in the first step experiment. (2) The treatment with estrogen, genistein (Gs), and ipriflavone (Ip) significantly reversed the effect elicited by ovariectomy on Vv, S, δ, Cλz, Nv, and particle average diameter (D) of mitochondria of hippocampal CA1 region (P < 0.05). (3) Furthermore, ATP content of hippocampal CA1 region after ovariectomy declined significantly on 7th day (P < 0.05), and estrogen and phytoestrogen could reverse the alteration (P < 0.05). Taken together, these results revealed that phytoestrogen may have a protective role against the neurodegeneration after menopause via protecting mitochondrial structure and functions. Phytoestrogen may be a good alternative as a novel therapeutic strategy for menopausal syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahari SE, Houshmand M, Panahi MS et al (2007) Investigation on mitochondrial tRNA(Leu/Lys), NDI and ATPase 6/8 in Iranian multiple sclerosis patients. Cell Mol Neurobiol 27(6):695–700

    Article  PubMed  CAS  Google Scholar 

  • Arjmandi BH (2000) The synthetic phytoestrogen ipriflavone and estrogen prevent bone loss by different mechanisms. Calcif Tissue Int 66(1):61–65

    Article  PubMed  CAS  Google Scholar 

  • Baxa DM, Luo X, Yoshimura FK (2005) Genistein induces apoptosis in T lymphoma cells via mitochondrial damage. Nutr Cancer 51(1):93–101

    Article  PubMed  CAS  Google Scholar 

  • Beyer C (1999) Estrogen and the developing mammalian brain. Anat Embryol Berl 199(5):379–390

    Article  PubMed  CAS  Google Scholar 

  • Bingham SA, Atkinson C, Liggins J et al (1998) Phytoestrogens: where are we now? Br J Nutr 79(5):393–406

    Article  PubMed  CAS  Google Scholar 

  • Brinton RD (2001) Cellular and molecular mechanisms of estrogen regulation of memory function and neuroprotection against Alzheimer’s disease: recent insights and remaining challenges. Learn Mem 8(3):121–133

    Article  PubMed  CAS  Google Scholar 

  • Cappelletti V (2000) Genistein blocks breast cancer cells in the G (2) M phase of the cell cycle. J Cell Biochem 79(4):594–600

    Article  PubMed  CAS  Google Scholar 

  • Carsweu HV, Macrae JM, Gauagher L et al (2004) Neuroprotection by a selective estrogen receptor beta agonist in a mouse model of global ischemia. Am J Physiol Heart Circ Physiol 287(4):1501–1504

    Article  Google Scholar 

  • Coleman PD, Flood DG (1987) Neuron numbers and dendritic extent in normal aging and Alzheimer’s disease. Neurobiol Aging 8(6):521–545

    Article  PubMed  CAS  Google Scholar 

  • Daniel JM, Dohanich GP (2001) Acetylcholine mediates the estrogen-induced increase in NMDA receptor binding in CA1 of the hippocampus and the associated improvement in working memory. J Neurosci 21(17):6949–6956

    PubMed  CAS  Google Scholar 

  • Dixon-Shanies D, Shaikh N (1999) Growth inhibition of human breast cancer cells by herbs and phytoestrogens. Oncol Rep 6(6):1383–1387

    PubMed  CAS  Google Scholar 

  • Dubal DB, Kashon ML, Pettigrew LC et al (1998) Estradiol protects against ischemic injury. J Cereb Blood Flow Metab 18(1):1253–1258

    Article  PubMed  CAS  Google Scholar 

  • Fillit H, Weinreb H, Cholst I et al (1986) Observations in a preliminary open trial of estradiol therapy for senile dementia-Alzheimer’s type. Psychoneuroendocrinology 11(3):337–345

    Article  PubMed  CAS  Google Scholar 

  • Fürbass R, Kalbe C, Vanselow J (1997) Tissue-specific expression of the bovine aromatase-encoding gene uses multiple transcriptional start sites and alternative first exons. Endocrinology 138(7):2813–2819

    Article  PubMed  Google Scholar 

  • Gibbs RB (1998) Impairment of basal forebrain cholinergic neurons associated with aging and long term loss of ovarian function. Exp Neurol 151(2):289–302

    Article  PubMed  CAS  Google Scholar 

  • Gibbs RB, Aggarwal P (1998) Estrogen and basal forebrain cholinergic neurons: implications for brain aging and Alzheimer’s disease-related cognitive decline. Horm Behav 34(2):98–111

    Article  PubMed  CAS  Google Scholar 

  • Glazier MG, Bowman MA (2001) A review of the evidence for the use of phytoestrogens as a replacement for traditional estrogen replacement therapy. Arch Intern Med 161(9):1161–1172

    Article  PubMed  CAS  Google Scholar 

  • Green PS, Simpkins JW (2000) Neuroprotective effects of estrogens: potential mechanisms of action. Int J Dev Neurosci 18(4–5):347–358

    Article  PubMed  CAS  Google Scholar 

  • Huang EJ, Wu CC, Huang HP et al (2006) Apoptotic and anti-proliferative effects of 17-beta-estradiol and 17-beta-estradiol-like compounds in the Hep3B cell line. Mol Cell Biochem 290(1–2):1–7

    Article  PubMed  CAS  Google Scholar 

  • Hyden H, Lange PW, Mihailovic L et al (1974) Changes of RNA base composition in nerve cells of monkeys subjected to visual discrimination and delayed alteration performance. Brain Res 65(2):215–230

    Article  PubMed  CAS  Google Scholar 

  • Kajimoto S, Takanashi N, Kajimoto T et al (2002) Sophoranone, extracted from a traditional Chinese medicine Shan Dou Gen, induces apoptosis in human leukemia U937 cells via formation of reactive oxygen species and opening of mitochondrial permeability transition pores. Int J Cancer 99(6):879–890

    Article  PubMed  CAS  Google Scholar 

  • Kowaltowski AJ, Vercesi AE (1999) Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med 26(3–4):463

    Article  PubMed  CAS  Google Scholar 

  • Leuner B, Mendolia-Loffredos S, Shors TJ (2004) High levels of estrogen enhance associative memory formation in ovariectmized females. Psychoneuroendocrinology 29(7):883–890

    Article  PubMed  CAS  Google Scholar 

  • Levko AV, Rakovich AA, Samoilenko SG et al (2003) Characteristics of the hypoosmosis-induced calcium response in isolated nerve terminals of rat brain. Med Sci Monit 9(4):BR115–BR124

    PubMed  CAS  Google Scholar 

  • Luine VN, Richards ST, Wu VY et al (1998) Estradiol enhances learning and memory in a spatial memory task and effects levels of monoaminergic neurotransmitters. Horm Behav 34(2):149–162

    Article  PubMed  CAS  Google Scholar 

  • McEwen B, Akama K, Alves S et al (2001) Tracking the estrogen receptor in neurons: implications for estrogen-induced synapse formation. Proc Natl Acad Sci USA 98(13):7093–7100

    Article  PubMed  CAS  Google Scholar 

  • Miquel J, Ramírez-Boscá A, Ramírez-Boscá JV et al (2006) Menopause: a review on the role of oxygen stress and favorable effects of dietary antioxidants. Arch Gerontol Geriatr 42(3):289–306

    Article  PubMed  CAS  Google Scholar 

  • Monteiro SC, Matté C, Bavaresco CS et al (2005) Vitamins E and C pretreatment prevents ovariectomy-induced memory deficits in water maze. Neurobiol Learn Mem 84(3):192–199

    Article  PubMed  CAS  Google Scholar 

  • Mooradian AD (1993) Antioxidant properties of steroids. J Steroid Biochem Mol Biol 45(6):509–511

    Article  PubMed  CAS  Google Scholar 

  • Mouria M, Gukovskaya AS, Jung Y et al (2002) Food-derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. Int J Cancer 98(5):761–769

    Article  PubMed  CAS  Google Scholar 

  • Park SS, Kim YN, Jeon YK et al (2005) Genistein-induced apoptosis via Akt signaling pathway in anaplastic large-cell lymphoma. Cancer Chemother Pharmacol 56(3):271–278

    Article  PubMed  CAS  Google Scholar 

  • Polster BM, Fiskum G (2004) Mitochondrial mechanisms of neural cell apoptosis. J Neurochem 90:1281–1289

    Article  PubMed  CAS  Google Scholar 

  • Rahman SM, Itakura H (1996) Morphometry in histopathology: an image analysis workstation for the pathology laboratory. Anal Quant Cytol Histol 18:471–480

    PubMed  CAS  Google Scholar 

  • Ran SW, Daubed DB, Botrner M et al (2003) Estradiol attenuates programmed cell death after strok-like injury. J Neurosci 23(36):11420–11426

    Google Scholar 

  • Salvi M, Brunati AM, Clari G et al (2002) Interaction of genistein with the mitochondrial electron transport chain results in opening of the membrane transition pore. Biochim Biophys Acta 1556(2–3):187–196

    PubMed  CAS  Google Scholar 

  • Sandstrom NJ, Williams CL (2001) Memory retention is modulated by acute estradiol and progesterone replacement. Behav Neurosci 115(2):384–393

    Article  PubMed  CAS  Google Scholar 

  • Santizo RA, Anderson S, Ye S et al (2000) Effects of estrogen on leukocyte adhesion after transient forebrain ischemia. Stroke 31(9):2231–2235

    PubMed  CAS  Google Scholar 

  • Savonenko AV, Markowska AL (2003) The cognitive effects of ovariectomy and estrogen replacement are modulated by aging. Neurosci 119(3):821–830

    Article  CAS  Google Scholar 

  • Shen H, Shen ZY (1991) Practical technology of biological stereology. Sun Yat-sen university press, Guangzhou, 65–83

    Google Scholar 

  • Simpkins JW, Rajakumar G, Zhang YQ et al (1997) Estrogens may reduce mortality and ischemic damage caused by middle cerebral artery occlusion in the female rat. J Neuro-surg 87(5):724–730

    CAS  Google Scholar 

  • Simpkins JW, Wang J, Wang X et al (2005) Mitochondria play a central role in estrogen-induced neuro-protection. Curr Drug Targets CNS Neurol Disord 4(1):69–83

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Meyer EM, Millard WJ et al (1994) Ovarian steroid deprivation results in a reversible learning impairment and compromised cholinergic function in female Sprague-Dawley rats. Brain Res 644(2):305–312

    Article  PubMed  CAS  Google Scholar 

  • Tang MX, Mayeue G, Andrews H et al (1996) Effect of estrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 348(9025):429–432

    Article  PubMed  CAS  Google Scholar 

  • Toran-Allerand CD (2004) Minireview: a plethora of estrogen receptors in the brain: where will it end? Endocrinology l45(3):1069–1074

    Google Scholar 

  • Toran-Allerand CD, Singh M, Setalo G Jr (1999) Novel mechanisms of estrogen action in the brain: new players in an old story. Front Neuroendocrinol 20(2):97–121

    Article  PubMed  CAS  Google Scholar 

  • Toung TJ, Traystman RJ, Hurn PD et al (1998) Estrogen-mediated neuroprotection after experimental stroke in male rats. Stroke 29(8):1666–1670

    PubMed  CAS  Google Scholar 

  • Turrens JF (1997) Superoxide production by the mitochondrial respiratory chain. Biosci Rsp 17(1):3

    Article  CAS  Google Scholar 

  • Wang Q, Santizo R, Baughman VL et al (1999) Estrogen provides neuroprotection in transient forebrain ischemia through perfusion-independent mechanisms in rats. Stroke 30(3):630–637

    PubMed  CAS  Google Scholar 

  • Wickelgren I (1997) Estrogen stakes claim to cognition. Science 276(5313):675–678

    Article  PubMed  CAS  Google Scholar 

  • Wise PM (2002) Estrogens and neuroprotection. Trends Endocrinol Metab 13(6):229–230

    Article  PubMed  CAS  Google Scholar 

  • Wise PM, Dubal DB, Wilson ME et al (2001a) Estrogens: trophic and protective factors in the adult brain. Front Neuroendocrinol 22(1):33–66

    Article  PubMed  CAS  Google Scholar 

  • Wise PM, Dubal DB, Wilson ME et al (2001b) Estradiol is a protective factor in the adult and aging brain: understanding of mechanism derived from in vivo and in vitro studies. Brain Res Rev 37(1–3):313–319

    Article  PubMed  CAS  Google Scholar 

  • Woolley CS, McEwen BS (1992) Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J Neurosci 12:2549–2554

    PubMed  CAS  Google Scholar 

  • Wooley CS, McEwen BS (1993) Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat. J Comp Neurol 336(2):293–306

    Article  Google Scholar 

  • Yankova M, Hart SA, Woolley CS (2001) Estrogen increases synaptic connectivity between single presynaptic inputs and multiple postsynaptic CA1 pyramidal cells: a serial electron–microscopic study. Proc Natl Acad Sci 98:3525–3530

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Moon SC, Kim ND et al (2000) Genistein induces apoptosis of RPE-J cells by opening mitochondrial PTP. Biochem Biophys Res Commun 276(1):151–156

    Article  PubMed  CAS  Google Scholar 

  • Zhai P, Eurell TE (2001) Effects of dietary phytoestrogen on global myocardial is chemical-reperfusion injury in isolated female rat hearts. Am J Physiol Heart Circ Physiol 281(3):H1223–H1232

    PubMed  CAS  Google Scholar 

  • Zhao LX, Chen Q, Diaz Brinton R (2002) Neuroprotective and neurotrophic efficacy of phytoestrogens in cultured hippocampal neurons. Exp Biol Med 227(7):509–519

    CAS  Google Scholar 

  • Zheng FS (1990) Cellular morphometry. Publishing House of Beijing University of Medicine, Beijing, pp 17–78

    Google Scholar 

  • Zhu JH, Guo KH, Xu Jie (2004) Effects of genistein on learning and memory function of ovariectomized rats. Chinese J Clin Rehabil 8(4):650–651

    CAS  Google Scholar 

  • Zurkovsky I, Brown SL, Korol DL (2006) Estrogen modulates place learning through estrogen receptors in the hippocampus. Neurobiol Learn Mem 86(3):336–343

    Article  PubMed  CAS  Google Scholar 

  • Zurkovsky I, Brown SL, Body SE et a1 (2007) Estrogen modulates learning in female rats by acting directly at distinct memory systems. Neuroscience 144(1):26–37

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Many thanks for support from the GuangDong Provincial Natural Science Foundation (No. C04105332) and the Key Guidance Project of GuangDong Provincial Science and Technology Planning (No. 2005B33801004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, XW., Shi, C., He, ZQ. et al. Effects of Phytoestrogen on Mitochondrial Structure and Function of Hippocampal CA1 Region of Ovariectomized Rats. Cell Mol Neurobiol 28, 875–886 (2008). https://doi.org/10.1007/s10571-008-9265-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-008-9265-2

Keywords

Navigation