Skip to main content
Log in

Neuroprotective Mechanism of Taurine due to Up-regulating Calpastatin and Down-regulating Calpain and Caspase-3 during Focal Cerebral Ischemia

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Aims Taurine as an endogenous substance possesses a number of cytoprotective properties. In the study, we have evaluated the neuroprotective effect of taurine and investigated whether taurine exerted neuroprotection through affecting calpain/calpastatin or caspase-3 actions during focal cerebral ischemia, since calpain and caspase-3 play central roles in ischemic neuronal death. Methods Male Sprague–Dawley rats were subjected to 2 h of middle cerebral artery occlusion (MCAo), and 22 h of reperfusion. Taurine was administrated intravenously 1 h after MCAo. The dose–responses of taurine to MCAo were determined. Next, the effects of taurine on the activities of calpain, calpastatin and caspase-3, the levels of calpastatin, microtubule-associated protein-2 (MAP-2) and αII-spectrin, and the apoptotic cell death in penumbra were evaluated. Results Taurine reduced neurological deficits and decreased the infarct volume 24 h after MCAo in a dose-dependent manner. Treatment with 50 mg/kg of taurine significantly increased the calpastatin protein levels and activities, and markedly reduced the m-calpain and caspase-3 activities in penumbra 24 h after MCAo, however, it had no significant effect on μ-calpain activity. Moreover, taurine significantly increased the MAP-2 and αII-spectrin protein levels, and markedly reduced the ischemia-induced TUNEL staining positive score within penumbra 24 h after MCAo. Conclusions Our data demonstrate the dose-dependent neuroprotection of taurine against transient focal cerebral ischemia, and suggest that one of protective mechanisms of taurine against ischemia may be blocking the m-calpain and caspase-3-mediated apoptotic cell death pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ashwal S, Tone B, Tian HR, Cole DJ, Pearce WJ (1998) Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion. Stroke 29:1037–1047

    CAS  PubMed  Google Scholar 

  • Benchoua A, Guegan C, Couriaud C, Hosseini H, Sampaio N, Morin D, Onteniente B (2001) Specific caspase pathways are activated in the two stages of cerebral infarction. J Neurosci 21:7127–7134

    CAS  PubMed  Google Scholar 

  • Bennett V (1990) Spectrin: a structural mediator between diverse plasma membrane proteins and the cytoplasm. Curr Opin Cell Biol 2:51–56

    Article  CAS  PubMed  Google Scholar 

  • Birdsall TC (1998) Therapeutic applications of taurine. Altern Med Rev 3:128–136

    CAS  PubMed  Google Scholar 

  • Blomgren K, Hallin U, Andersson AL, Puka-Sundvall M, Bahr BA, McRae A, Saido TC, Kawashima S, Hagberg H (1999) Calpastatin is up-regulated in response to hypoxia and is a suicide substrate to calpain after neonatal cerebral hypoxia-ischemia. J Biol Chem 274:14046–14052

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carruthers-Jones DI, van Gelder NM (1978) Influence of taurine dosage on cobalt epilepsy in mice. Neurochem Res 3:115–123

    Article  CAS  PubMed  Google Scholar 

  • Cheng YD, Al-Khoury L, Zivin JA (2004) Neuroprotection for ischemic stroke: two decades of success and failure. NeuroRx 1:36–45

    Article  PubMed  Google Scholar 

  • Crocker SJ, Smith PD, Jackson-Lewis V, Lamba WR, Hayley SP, Grimm E, Callaghan SM, Slack RS, Melloni E, Przedborski S, Robertson GS, Anisman H, Merali Z, Park DS (2003) Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson’s disease. J Neurosci 23:4081–4091

    CAS  PubMed  Google Scholar 

  • Davoli MA, Fourtounis J, Tam J, Xanthoudakis S, Nicholson D, Robertson GS, Ng GY, Xu D (2002) Immunohistochemical and biochemical assessment of caspase-3 activation and DNA fragmentation following transient focal ischemia in the rat. Neuroscience 115:125–136

    Article  CAS  PubMed  Google Scholar 

  • Dawson DA, Hallenbeck JM (1996) Acute focal ischemia-induced alterations in MAP2 immunostaining: description of temporal changes and utilization as a marker for volumetric assessment of acute brain injury. J Cereb Blood Flow Metab 16:170–174

    Article  CAS  PubMed  Google Scholar 

  • Dirnagl U, Simon RP, Hallenbeck JM (2003) Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26:248–254

    Article  CAS  PubMed  Google Scholar 

  • Durelli L, Mutani R (1983) The current status of taurine in epilepsy. Clin Neuropharmacol 6:37–48

    Article  CAS  PubMed  Google Scholar 

  • El Idrissi A, Trenkner E (2003) Taurine regulates mitochondrial calcium homeostasis. Adv Exp Med Biol 526:527–536

    CAS  PubMed  Google Scholar 

  • El Idrissi A, Trenkner E (2004) Taurine as a modulator of excitatory and inhibitory neurotransmission. Neurochem Res 29:189–197

    Article  CAS  PubMed  Google Scholar 

  • El Idrissi A, Messing J, Scalia J, Trenkner E (2003) Prevention of epileptic seizures by taurine. Adv Exp Med Biol 526:515–525

    CAS  PubMed  Google Scholar 

  • Fifre A, Sponne I, Koziel V, Kriem B, Yen Potin FT, Bihain BE, Olivier JL, Oster T, Pillot T (2006) Microtubule-associated protein MAP1A, MAP1B, and MAP2 proteolysis during soluble amyloid beta-peptide-induced neuronal apoptosis. Synergistic involvement of calpain and caspase-3. J Biol Chem 281:229–240

    Article  CAS  PubMed  Google Scholar 

  • Fink K, Zhu J, Namura S, Shimizu-Sasamata M, Endres M, Ma J, Dalkara T, Yuan J, Moskowitz MA (1998) Prolonged therapeutic window for ischemic brain damage caused by delayed caspase activation. J Cereb Blood Flow Metab 18:1071–1076

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick MO, Dewar D, Teasdale GM, Graham DI (1996) The neuronal cytoskeleton: an insight for neurosurgeons. Brit J Neurosurg 10:483–487

    Article  CAS  Google Scholar 

  • Foos TM, Wu JY (2002) The role of taurine in the central nervous system and the modulation of intracellular calcium homeostasis. Neurochem Res 27:21–26

    Article  CAS  PubMed  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  CAS  PubMed  Google Scholar 

  • Gladstone DJ, Black SE, Hakim AM, Heart and Stroke Foundation of Ontario Centre of Excellence in Stroke Recovery (2002) Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 33:2123–2136

    Google Scholar 

  • Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    CAS  PubMed  Google Scholar 

  • Goodman SR, Zagon IS (1986) The neural cell spectrin skeleton: a review. Am J Physiol 250:C347–C360

    CAS  PubMed  Google Scholar 

  • Han F, Shirasaki Y, Fukunaga K (2006) 3-[2-[4-(3-Chloro-2-methylphenylmethyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydro-chloride 3.5 hydrate (DY-9760e) is neuroprotective in rat microsphere embolism: role of the cross-talk between calpain and caspase-3 through calpastatin. J Pharmacol Exp Ther 317:529–536

    Article  CAS  PubMed  Google Scholar 

  • Hoffman GE, Merchenthaler I, Zup SL (2006) Neuroprotection by ovarian hormones in animal models of neurological disease. Endocrine 29:217–232

    Article  CAS  PubMed  Google Scholar 

  • Huxtable RJ (1992) Physiological action of taurine. Physiol Rev 72:101–163

    CAS  PubMed  Google Scholar 

  • Huxtable RJ (2000) Expanding the circle 1975–1999: sulfur biochemistry and insights on the biological functions of taurine. Adv Exp Med Biol 483:1–25

    Article  CAS  PubMed  Google Scholar 

  • Jacobson I, Hamberger A (1984) Veratridine-induced release in vivo and in vitro of amino acids in the rabbit olfactory bulb. Brain Res 299:103–112

    Article  CAS  PubMed  Google Scholar 

  • Johnson GV, Litersky JM, Jope RS (1991) Degradation of microtubule-associated protein 2 and brain spectrin by calpain: a comparative study. J Neurochem 56:1630–1638

    Article  CAS  PubMed  Google Scholar 

  • Juin P, Pelletier M, Oliver L, Tremblais K, Gregoire M, Meflah K, Vallette FM (1998) Induction of a caspase-3-like activity by calcium in normal cytosolic extracts triggers nuclear apoptosis in a cell-free system. J Biol Chem 273:17559–17564

    Article  CAS  PubMed  Google Scholar 

  • Kambe A, Yokota M, Saido TC, Satokata I, Fujikawa H, Tabuchi S, Kamitani H, Watanabe T (2005) Spatial resolution of calpain-catalyzed proteolysis in focal cerebral ischemia. Brain Res 1040:36–43

    Article  CAS  PubMed  Google Scholar 

  • Kamisaki Y, Wada K, Nakamoto K, Itoh T (1996) Release of taurine and its effects on release of neurotransmitter amino acids in rat cerebral cortex. Adv Exp Med Biol 403:445–454

    CAS  PubMed  Google Scholar 

  • Kristian T, Siesjö BK (1998) Calcium in ischemic cell death. Stroke 29:705–718

    CAS  PubMed  Google Scholar 

  • Labiche LA, Grotta JC (2004) Clinical trials for cytoprotection in stroke. NeuroRx 1:46–70

    Article  PubMed  Google Scholar 

  • Lallemand F, De Witte P (2004) Taurine concentration in the brain and in the plasma following intraperitoneal injections. Amino Acids 26:111–116

    Article  CAS  PubMed  Google Scholar 

  • Lin TN, He YY, Wu G, Khan M, Hsu CY (1993) Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke 24:117–121

    CAS  PubMed  Google Scholar 

  • Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    CAS  PubMed  Google Scholar 

  • Lizasoain I, Cardenas A, Hurtado O, Romera C, Mallolas J, Lorenzo P, Castillo J, Moro MA (2006) Targets of cytoprotection in acute ischemic stroke: present and future. Cerebrovasc Dis 21(Suppl 2):1–8

    Article  PubMed  Google Scholar 

  • Lo EH, Pierce AR, Matsumoto K, Kano T, Evans CJ, Newcomb R (1998) Alterations in K+ evoked profiles of neurotransmitter and neuromodulator amino acids after focal ischemia-reperfusion. Neuroscience 83:449–458

    Article  CAS  PubMed  Google Scholar 

  • Louzada PR, Lima AC, Mendonca-Silva DL, Noel F, De Mello FG, Ferreira ST (2004) Taurine prevents the neurotoxicity of beta-amyloid and glutamate receptor agonists: activation of GABA receptors and possible implications for Alzheimer’s disease and other neurological disorders. FASEB J 18:511–518

    Article  CAS  PubMed  Google Scholar 

  • Ludin B, Matus A (1993) The neuronal cytoskeleton and its role in axonal and dendritic plasticity. Hippocampus 3:61–71

    PubMed  Google Scholar 

  • Mattson MP, Culmsee C, Yu ZF (2000) Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res 301:173–187

    Article  CAS  PubMed  Google Scholar 

  • Memezawa H, Minamisawa H, Smith ML, Siesjö BK (1992) Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat. Exp Brain Res 89:67–78

    Article  CAS  PubMed  Google Scholar 

  • Michalk DV, Wingenfeld P, Licht C, Ugur T, Siar LF (1996) The mechanisms of taurine mediated protection against cell damage induced by hypoxia and reoxygenation. Adv Exp Med Biol 403:223–232

    CAS  PubMed  Google Scholar 

  • Minger SL, Geddes JW, Holtz ML, Craddock SD, Whiteheart SW, Siman RG, Pettigrew LC (1998) Glutamate receptor antagonists inhibit calpain-mediated cytoskeletal proteolysis in focal cerebral ischemia. Brain Res 81:181–199

    Article  Google Scholar 

  • Moran J, Salazar P, Pasantes-Morales H (1987) Effect of tocopherol and taurine on membrane fluidity of retinal rod outer segments. Exp Eye Res 45:769–776

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Ogasawara M, Koyama I, Nemoto M, Yoshida T (1993) The protective effect of taurine on the biomembrane against damage produced by oxygen radicals. Biol Pharm Bull 16:970–972

    CAS  PubMed  Google Scholar 

  • Nath R, Raser KJ, Stafford D, Hajimohammadreza I, Posner A, Allen H, Talanian RV, Yuen P, Gilbertsen RB, Wang KK (1996) Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem J 319:683–690

    CAS  PubMed  Google Scholar 

  • Palmi M, Youmbi GT, Fusi F, Sgaragli GP, Dixon HB, Frosini M, Tipton KF (1999) Potentiation of mitochondrial Ca2+ sequestration by taurine. Biochem Pharmacol 58:1123–1131

    Article  CAS  PubMed  Google Scholar 

  • Park SH, Lee H, Park KK, Kim HW, Park T (2006) Taurine-responsive genes related to signal transduction as identified by cDNA microarray analyses of HepG2 cells. J Med Food 9:33–41

    Article  CAS  PubMed  Google Scholar 

  • Pasantes-Morales H, Arzate ME (1981) Effect of taurine on seizures induced by 4-aminopyridine. J Neurosci Res 6:465–474

    Article  CAS  PubMed  Google Scholar 

  • Pokhrel PK, Lau-Cam CA (2000) Protection by taurine and structurally related sulfur-containing compounds against erythrocyte membrane damage by hydrogen peroxide. Adv Exp Med Biol 483:411–429

    Article  CAS  PubMed  Google Scholar 

  • Rami A, Volkmann T, Agarwal R, Schoninger S, Nurnberger F, Saido TC, Winckler J (2003) Beta2-Adrenergic receptor responsiveness of the calpain–calpastatin system and attenuation of neuronal death in rat hippocampus after transient global ischemia. Neurosci Res 47:373–382

    Article  CAS  PubMed  Google Scholar 

  • Raser KL, Posner A, Wamg KKW (1995) Casein zymography: a method to study μ-calpain, m-calpain and their inhibitory agents. Arch Biochem Biophys 319:211–216

    Article  CAS  PubMed  Google Scholar 

  • Salvesen GS, Dixit VM (1997) Caspases: intracellular signaling by proteolysis. Cell 91:443–446

    Article  CAS  PubMed  Google Scholar 

  • Sanberg PR, Willow M (1980) Dose-dependent effects of taurine on convulsions induced by hypoxia in the rat. Neurosci Lett 16:297–300

    Article  CAS  PubMed  Google Scholar 

  • Saransaari P, Oja SS (2000) Taurine and neural cell damage. Amino Acids 19:509–526

    Article  CAS  PubMed  Google Scholar 

  • Schmid-Elsaesser R, Zausinger S, Hungerhuber E, Baethmann A, Reulen, HJ (1998) A critical reevalution of the intraluminal thread model of focal cerebral ischemia. Evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry. Stroke 29:2162–2170

    CAS  PubMed  Google Scholar 

  • Schuller-Levis GB, Park E (2004) Taurine and its chloramine: modulators of immunity. Neurochem Res 29:117–126

    Article  CAS  PubMed  Google Scholar 

  • Schurr A, Tseng MT, West CA, Rigor BM (1987) Taurine improves the recovery of neuronal function following cerebral hypoxia: an in vitro study. Life Sci 40:2059–2066

    Article  CAS  PubMed  Google Scholar 

  • Shioda N, Moriguchi S, Shirasaki Y, Fukunaga K (2006) Generation of constitutively active calcineurin by calpain contributes to delayed neuronal death following mouse brain ischemia. J Neurochem 98:310–320

    Article  CAS  PubMed  Google Scholar 

  • Shuaib A (2003) The role of taurine in cerebral ischemia: studies in transient forebrain ischemia and embolic focal ischemia in rodents. Adv Exp Med Biol 526:421–431

    CAS  PubMed  Google Scholar 

  • Sorimachi Y, Harada K, Saido TC, Ono T, Kawashima S, Yoshida K (1997) Downregulation of calpastatin in rat heart after brief ischemia and reperfusion. J Biochem(Tokyo) 122:743–748

    CAS  Google Scholar 

  • Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR (1990) A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 10:290–293

    CAS  PubMed  Google Scholar 

  • Tamai I, Senmaru M, Terasaki T, Tsuji A (1995) Na+- and Cl-dependent transport of taurine at the blood–brain barrier. Biochem Pharmacol 50:1783–1793

    Article  CAS  PubMed  Google Scholar 

  • Urquhart N, Perry TL, Hansen S, Kennedy J (1974) Passage of taurine into adult mammalian brain. J Neurochem 22:871–872

    Article  CAS  PubMed  Google Scholar 

  • Wang KKW, Posmantur R, Nadimpalli R, Nath R, Mohan P, Nixon RA, Talanian RV, Keegan M, Herzog L, Allen H (1998) Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis. Arch Biochem Biophys 356:187–196

    Article  CAS  PubMed  Google Scholar 

  • Williams ST, Smith AN, Cianci CD, Morrow JS, Brown TL (2003) Identification of the primary caspase 3 cleavage site in alpha II-spectrin during apoptosis. Apoptosis 8:353–361

    Article  CAS  PubMed  Google Scholar 

  • Wu JY, Lin CT, Johansen FF, Liu JW (1994) Taurine neurons in rat hippocampal formation are relatively inert to cerebral ischemia. Adv Exp Med Biol 359:289–298

    CAS  PubMed  Google Scholar 

  • Yoshida K, Yamasaki Y, Kawashima S (1993) Calpain activity alters in rat myocardial subfractions after ischemia or reperfusion. Biochim Biophys Acta 1182:215–220

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, M., Xu, C. Neuroprotective Mechanism of Taurine due to Up-regulating Calpastatin and Down-regulating Calpain and Caspase-3 during Focal Cerebral Ischemia. Cell Mol Neurobiol 28, 593–611 (2008). https://doi.org/10.1007/s10571-007-9183-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-007-9183-8

Keywords

Navigation