Skip to main content
Log in

Agmatine and Imidazoline Receptors: Their Role in Opioid Analgesia, Tolerance and Dependence

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Agmatine is an endogenous amine that is synthesized following the decarboxylation of l-arginine by arginine decarboxylase. Agmatine exists in mammalian brain and has been proposed as a neurotransmitter and/or neurotransmodulator. Agmatine binds to several targets and is considered as an endogenous ligand for imidazoline receptors. This review, mainly based on our research work in the past decade, focused on the modulations by agmatine action on imidazoline receptors to opioid analgesia, tolerance and dependence, and its possible neurochemical mechanisms. We went on to propose that agmatine and imidazoline receptors constitute a novel system of modulating opioid functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aricioglu F, Ercil E, Dulger G (2003) Agmatine inhibits naloxone-induced contractions in morphine-dependent guinea pig ileum. Ann NY Acad Sci 1009:147–151

    Article  PubMed  CAS  Google Scholar 

  • Aricioglu F, Paul IA, Regunathan S (2004) Agmatine reduces only peripheral-related behavioral signs, not the central signs, of morphine withdrawal in nNOS deficient transgenic mice. Neurosci Lett 354:153–157

    Article  PubMed  CAS  Google Scholar 

  • Aricioglu-Kartal F, Regunathan S (2002) Effect of chronic morphine treatment on the biosynthesis of agmatine in rat brain and other tissues. Life Sci 71:1695–1701

    Article  PubMed  CAS  Google Scholar 

  • Aricioglu-Kartal F, Uzbay IT (1997) Inhibitory effect of agmatine on naloxone-precipitated abstinence syndrome in morphine dependent rats. Life Sci 61:1775–1781

    Article  PubMed  CAS  Google Scholar 

  • Boronat MA, Olmos G, Garcia-Sevilla JA (1998) Attenuation of tolerance to opioid-induced antinociception and protection against morphine-induced decrease of neurofilament proteins by idazoxan and other I2-imidazoline ligands. Br J Pharmacol 125:175–185

    Article  PubMed  CAS  Google Scholar 

  • Bricca G, Greney H, Zhang J, Dontenwill M, Stutzmann J, Belcourt A, Bousquet P (1994) Human brain imidazoline receptors: further characterization with [3H]clonidine. Eur J Pharmacol 266:25–33

    Article  PubMed  CAS  Google Scholar 

  • Dontenwill M, Pascal G, Piletz JE, Chen M, Baldwin J, Ronde P, Dupuy L, Urosevic D, Greney H, Takeda K, Bousquet P (2003a) IRAS, the human homologue of nischarin, prolongs survival of transfected PC12 cell. Cell Death Differ 10:933–935

    Article  PubMed  CAS  Google Scholar 

  • Dontenwill M, Piletz JE, Chen M, Baldwin J, Pascal G, Ronde P, Dupuy L, Greney H, Takeda K, Bousquetd P (2003b) IRAS is an anti-apoptotic protein. Ann NY Acad Sci 1009:400–412

    Article  PubMed  CAS  Google Scholar 

  • Dupuy L, Urosevic D, Greney H, Quaglia W, Pigini M, Brasili L, Dontenwill M, Bousquet P (2004) I1 imidazoline receptor-mediated effects on apoptotic processes in PC12 cells. Cell Death Differ 11:1049–1052

    Article  PubMed  CAS  Google Scholar 

  • Edward L, Fishman D, Horowitz P, Nicole B, Kester M, Ernsberge P (2001) The imidazoline-1 receptor in PC12 pheochromocytoma cells activatives protein kinase C, extracelluar signal-regulated kinase (ERK) and c-jun N-terminal kinase (JUK). J Neurochem 79:931–940

    Article  Google Scholar 

  • Eglen RM, Hudson AL, Kendall DA, Nutt DJ, Morgan NG, Wilson VG, Dillon MP (1998) Seeing through a glass darkly: casting light on imidazoline ‘I’sites. Trends Pharmacol Sci 19:381–390

    Article  PubMed  CAS  Google Scholar 

  • Ernsberger P, Graves ME, Graff LM, Zakieh N, Nguyen P, Collins LA, Westbrooks KL, Johnson GG (1995) Imidazoline receptors. Definition, characterization, distribution, and transmembrane signaling. Ann NY Acad Sci 763:22–42

    Article  PubMed  CAS  Google Scholar 

  • Ernsberger P, Shen IH (1997) Membrane localization and guanine nucleotide sensitivity of medullary I1-imidazoline binding sites. Neurochem Int 30:17–28

    Article  PubMed  CAS  Google Scholar 

  • Fairbanks CA, Schreiber KL, Brewer KL, Yu CG, Stone LS, Kitto KF, Nguyen HO, Grocholski BM, Shoeman DW, Kehl LJ, Regunathan S, Reis DJ, Yezierski RP, Wilcox GL (2000) Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injury. Proc Natl Acad Sci USA 97:10584–10589

    Article  PubMed  CAS  Google Scholar 

  • Heidbreder CA, Hagan JJ (2005) Novel pharmacotherapeutic approaches for the treatment of drug addiction and craving. Curr Opin Pharmacol 5:107–118

    Article  PubMed  CAS  Google Scholar 

  • Hernandez S, Schwarcz de Tarlovsky S (1999) Arginine decarboxylase in Trypanosoma cruzi, characteristics and kinetic properties. Cell Mol Biol (Noisy-le-grand) 45:383–391

    CAS  Google Scholar 

  • Holt A, Baker GB (1995) Metabolism of agmatine (clonidine-displacing substance) by diamine oxidase and the possible implications for studies of imidazoline receptors. Prog Brain Res 106:187–197

    Article  PubMed  CAS  Google Scholar 

  • Horvath G, Kekesi G, Dobos I, Szikszay M, Klimscha W, Benedek G (1999) Effect of intrathecal agmatine on inflammation-induced thermal hyperalgesia in rats. Eur J Pharmacol 368:197–204

    Article  PubMed  CAS  Google Scholar 

  • Ivanov TR, Jones JC, Dontenwill M, Bousquet P, Piletz JE (1998) Charactetization of a partial cDNA clone detected by imidazoline receptor-selective antisera. J Auton Nerv Syst 72:98–110

    Article  PubMed  CAS  Google Scholar 

  • Kolesnikov Y, Jain S, Pasternak GW (1996) Modulation of opioid analgesia by agmatine. Eur J Pharmacol 296:17–22

    Article  PubMed  CAS  Google Scholar 

  • Kornetsky C (2004) Brain-stimulation reward, morphine-induced oral stereotypy, and sensitization: implications for abuse. Neurosci Biobehav Rev 27:777–786

    Article  PubMed  CAS  Google Scholar 

  • Li J, Li X, Pei G, Qin BY (1998a) Agmatine inhibited tolerance to and dependence on morphine in guinea pig ileum in vitro. Acta Pharmacol Sin 19:564–568

    Google Scholar 

  • Li J, Li X, Pei G, Qin BY (1998b) Coupling relationship between imidazoline receptors and G protein. Chin Pharmacol Co 15:27–28

    Google Scholar 

  • Li J, Li X, Pei G, Qin BY (1999a) Analgesic effect of agmatine and its enhancement on morphine analgesia in mice and rats. Acta Pharmacol Sin 20:81–85

    CAS  Google Scholar 

  • Li J, Li X, Pei G, Qin BY (1999b) Effects of agmatine on tolerance to and substance dependence on morphine in mice. Acta Pharmacol Sin 20:232–238

    Google Scholar 

  • Li J, Li X, Pei G, Qin BY (1999c) Influence of agmatine in adaptation of cAMP message transduction system of opiate receptors. Acta Pharmacol Sin 20:592–596

    CAS  Google Scholar 

  • Li J, Li X, Pei G, Qin BY (1999d) Correlation between agmatines inhibition of morphine withdrawaland its inhibition of nitric oxide synthase. Acta Pharmacol Sin 20:375–380

    CAS  Google Scholar 

  • Li J, Li X, Pei G, Qin BY (1999e) Inhibition of agmatine on releasing monoamine in different brain areas of rats. Pharm J Chin PLA 15:2–7

    Google Scholar 

  • Li G, Regunathan S, Barrow CJ, Eshraghi J, Cooper R, Reis DJ (1994) Agmatine: an endogenous clonidine-displacing substance in the brain. Science 263:966–969

    Article  PubMed  CAS  Google Scholar 

  • Li F, Wu N, Su RB, Zheng JQ, Xu B, Lu XQ, Cong B, Li J (2006) Involvement of phosphatidylcholine-selective phospholipase C in activation of mitogen-activated protein kinase pathways in imidazoline receptor antisera-selected protein. J Cell Biochem 98:1615–1628

    Article  PubMed  CAS  Google Scholar 

  • Liedtke CM, Ernsberger P (1995) Regulation of electrolyte transport in rabbit tracheal epithelial cells by the I1-imidazoline agonist moxonidine. Ann NY Acad Sci 763:401–404

    Article  PubMed  CAS  Google Scholar 

  • Lu G, Su RB, Li J, Qin BY (2003) Modulation by α-Difluoromethyl-ornithine and aminoguanidine of pain threshold, morphine analgesia and tolerance. Eur J Pharmacol 478:139–144

    Article  PubMed  CAS  Google Scholar 

  • Lu XQ, Su RB, Liu Y, Hu G, Li J (2003) Influence of intracerebroventricular and intrathecal injection of agmatine on morphine pharmacological effects. Pharm J Chin PLA 19:324–327

    Google Scholar 

  • Moldering GJ, Moura D, Fink K, Boisch H, Gothert M (1993) Binding of [3H]clonidine to I1-imidazoline sites in bovine adrenal medullary membranes. Naunyn Schmiedebergs Arch Pharmacol 348:70–76

    Article  Google Scholar 

  • Morgan AD, Campbell UC, Fons RD, Carroll ME (2002) Effects of agmatine on the escalation of intravenous cocaine and fentanyl selfadministration in rats. Pharmacol Biochem Be 72:873–880

    Article  CAS  Google Scholar 

  • Piletz JE, Sletten K (1993) Nonadrenergic imidazoline binding sites on human platelets. J Pharmacol Exp Ther 267:1493–1502

    PubMed  CAS  Google Scholar 

  • Piletz JE, Jones JC, Zhu H, Bishara O, Ernsberger P (1999) Imidazoline receptor antisera-selected cDNA and mRNA distribution. Ann NY Acad Sci 881:1–7

    Article  PubMed  CAS  Google Scholar 

  • Piletz JE, Ivanov TR, Sharp JD, Ernsberger P, Chang CH, Pickard RT, Gold G, Roth B, Zhu H, Jones JC, Baldwin J, Reis DJ (2000) Imidazoline receptor antisera-selected (IRAS) cDNA: cloning and characterization. DNA Cell Boil 19:319–329

    Article  CAS  Google Scholar 

  • Piletz JE, Wang G, Zhu H (2003) Cell signaling by imidazoline-1 receptor candidate, IRAS, and the nischarin homologue. Ann NY Acad Sci 1009:392–399

    Article  PubMed  CAS  Google Scholar 

  • Qin XH, Su RB, Wu N, Wei XL, Zhang H, Li J (2005) The analgesic effect of agmatine on inflammatory pain and its influence on the analgesia effect of morphine. Chin Pharmacol Bull 22:1070–1074

    CAS  Google Scholar 

  • Regunathan S (2006) Agmatine: biological role and therapeutic potentials in morphine analgesia and dependence. AAPS J 8:E479–E484

    Article  PubMed  CAS  Google Scholar 

  • Reis DJ, Regunathan S (2000) Is agmatine a novel neurotransmitter in brain? Trends Pharmacol Sci 21:187–193

    Article  PubMed  CAS  Google Scholar 

  • Roerig SC (2003) Spinal and supraspinal agmatine activate different receptors to enhance spinal morphine antinociception. Ann NY Acad Sci 1009:116–126

    Article  PubMed  CAS  Google Scholar 

  • Ruggiero DA, Regunathan S, Wang H, Milner T, Reis DJ (1998) Immunocytochemical localization of an imidazoline receptor protein in the central nervous system. Brain Res 780:270–293

    Article  PubMed  CAS  Google Scholar 

  • Sano H, Liu SCH, Lane WS, Pileta JE, Lienhard G (2002) Insulin receptor substrate 4 associates with the protein IRAS. J Biol Chem 277:19439–19447

    Article  PubMed  CAS  Google Scholar 

  • Selamnia M, Mayeur C, Robert V, Blachicr F (1998) Alpha-difluoromethylornithine (DFMO) as a potent arginase activity inhibitor in human colon carcinoma cells. Biochem Pharmacol 55:1241–1245

    Article  PubMed  CAS  Google Scholar 

  • Separovic D, Kester M, Ernsberger P (1996) Coupling of I1-imidazoline receptors to diacylglyceride accumulation in PC12 rat pheochromocytoma cells. Mol Pharmacol 49:668–675

    PubMed  CAS  Google Scholar 

  • Separovic D, Kester M, Haxhiu MA, Piletz JE (1997) Activation of phosphatidylcholine selective phospholipase C by I1-imidazoline receptors in PC12 cells and rostral ventrolateral medulla. Brain Res 749:335–339

    Article  PubMed  CAS  Google Scholar 

  • Su RB, Li J, Gao K, Pei G, Qin BY (2000) Influence of idazoxan on analgesia, tolerance, and physical dependence of morphine in mice and rats in vivo. Acta Pharmacol Sin 21:1011–1015

    PubMed  CAS  Google Scholar 

  • Su RB, Li J, Qin BY (2003a) A biphasic opioid function modulator: agmatine. Acta Pharmacol Sin 24:631–636

    PubMed  CAS  Google Scholar 

  • Su RB, Li J, Qin BY (2003b) Effects of l-arginine and anti-l-arginine decarboxylase antibody on morphine analgesia and tolerance. Chin J Drug Depend 12:97–101

    Google Scholar 

  • Su RB, Wei XL, Liu Y, Lu XQ, Li J (2005) Effect of l-arginine and l-arginine decarboxylase antibodies on pain threshold and analgesic of morphine. Chin J Pharmacol Toxicol 19:241–247

    CAS  Google Scholar 

  • Takada K, Hayashi Y, Kamibayashi T, Mammoto T, Yamatodani A, Kitamura S, Yoshiya I (1997) The involvement of pertussis toxin-sensitive G proteins in the post receptor mechanism of central imidazoline-1 receptors. Br J Pharmacol 120:1575–1581

    Article  PubMed  CAS  Google Scholar 

  • Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of locomotion sensitization: a critical review of preclinical studies. Psychopharmacology (Berl) 151:99–120

    Article  CAS  Google Scholar 

  • Wang XL, Su RB, Yang HJ, Wu N, Mi WD, Li J (2005) Effect of agmatine on morphine analgesia, and tolerance in a rat model of neuropathic pain. Chin J Anesthesiol 25:584–588

    CAS  Google Scholar 

  • Wang XF, Wu N, Su RB, Li J (2006) Regulation of agmatine on NMDA receptors expression in morphine dependent rats. Chin J Drug Depend 15:267–271

    CAS  Google Scholar 

  • Wei XL, Su RB, Yuan BL, Yu SZ, Lu XQ, Liu Y, Li J (2005) Inhibition by agmatine on morphine-induced conditioned place preference in rats. Eur J Pharmacol 515:99–106

    Article  PubMed  CAS  Google Scholar 

  • Weng XC, Gai XD, Zheng JQ, Li J (2003) Agmatine block voltage-gated calcium channel in cultured rat hippocampal neurons. Acta Pharmacol Sin 24:746–750

    PubMed  CAS  Google Scholar 

  • Wu N, Su RB, Li J, Qin BY (2004) Stable co-expression of rat μ opioid receptor and human imidazoline-1 receptor in Chinese hamster ovary cells. Bull Acad Mil Med Sci 28:329–332

    CAS  Google Scholar 

  • Wu N, Su RB, Liu Y, Lu XQ, Zheng JQ, Cong B, Li J (2006) Modulation of agmatine on calcium signal in morphine-dependent CHO cells by activation of IRAS, a candidate for imidazoline I1 receptor. Eur J Pharmacol 548:21–28

    Article  PubMed  CAS  Google Scholar 

  • Wu N, Su RB, Zhao Y, Xu B, Liu Y, Lu XQ, Li J (2005) Role of I1-imidazoline receptor on Naloxone-induced cAMP overshooting in chronic morphine treated CHO-μ/I1 cells. Biochemical Pharmcol 70:1079–1087

    Article  CAS  Google Scholar 

  • Zhang J, El-Ms MM, Abdel-Rahman AA (2001) Imidazoline I1 receptor-induced activation of phosphatidylcholinespecific phospholipase C elicits mitogen-activated protein kinase phosphorylation in PC12 cells. Eur J Pharmacol 415:117–125

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Su RB, Wu N, Xu B, Liu Y, Lu XQ, Li J (2004) Stable expression of imidazoline-1 receptor in mammalian cells. Bull Acad Mil Med Sci 28:333–336

    CAS  Google Scholar 

  • Zheng JQ, Weng XC, Gai XD, Li J, Xiao WB (2004) Mechanisms underlining blockage of voltage-gated calcium channels by agmatine in cultured rat hippocampal neurons. Acta Pharmacol Sin 25:281–285

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by National Basic Research Program of China (2003CB515400). We thank Prof. Xian-Sheng Lu for correcting the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, N., Su, RB. & Li, J. Agmatine and Imidazoline Receptors: Their Role in Opioid Analgesia, Tolerance and Dependence. Cell Mol Neurobiol 28, 629–641 (2008). https://doi.org/10.1007/s10571-007-9164-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-007-9164-y

Keywords

Navigation