Skip to main content

Advertisement

Log in

Immunohistological Determination of Ecto-nucleoside Triphosphate Diphosphohydrolase1 (NTPDase1) and 5′-nucleotidase in Rat Hippocampus Reveals Overlapping Distribution

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Distribution of two enzymes involved in the ectonucleotidase enzyme chain, ecto-nucleoside triphosphate diphosphohydrolase1 (NTPDase1) and ecto-5′-nucleotidase, was assessed by immunohistochemistry in the rat hippocampus. Obtained results have shown co-expression of the enzymes in the hippocampal region, as well as wide and strikingly similar cellular distribution. Both enzymes were expressed at the surface of pyramidal neurons in the CA1 and CA2 sections, while cells in the CA3 section were faintly stained. The granule cell layer of the dentate gyrus was moderately stained for NTPDase1, as well as for ecto-5′-nucleotidase. Glial association for ecto-5′-nucleotidase was also observed, and fiber tracts were intensively stained for both enzymes. This is the first comparative study of NTPDase1 and ecto-5′-nucleotidase distribution in the rat hippocampus. Obtained results suggest that the broad overlapping distribution of these enzymes in neurons and glial cells reflects the functional importance of ectonucleotidase actions in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almeida T, Rodrigues RJ, de Mendonca A, Ribeiro JA, Cunha RA (2003) Purinergic P2 receptors trigger adenosine release leading to adenosine A2A receptor activation and facilitation of long-term potentiation in rat hippocampal slices. Neuroscience 122:111–121

    Article  PubMed  CAS  Google Scholar 

  • Belcher SM, Zsarnovszsky A, Crawford PA, Hemani H, Spurling L, Kirley TL (2006) Immunolocalization of ecto-nucleoside triphosphate diphosphohydrolase 3 in rat brain: implications for modulation of multiple homeostatic systems including feeding and sleep-wake behaviors. Neuroscience 137:1331–1346

    Article  PubMed  CAS  Google Scholar 

  • Bernstein HG, Weiss J, Luppa H (1978) Cytochemical investigations on the localization of 5′-nucleotidase in the rat hippocampus with special reference to synaptic regions. Histochemistry 55:261–267

    Article  PubMed  CAS  Google Scholar 

  • Bjelobaba I, Nedeljkovic N, Subasic S, Lavrnja I, Pekovic S, Stojkov D, Rakic L, Stojiljkovic M (2006) Immunolocalization of ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) in the rat forebrain. Brain Res 1120:53–64

    Article  CAS  Google Scholar 

  • Boeck CR, Sarkis JJ, Vendite D (2002) Kinetic characterization and immunodetection of ecto-ATP diphosphohydrolase (EC 3.6.1.5) in cultured hippocampal neurons. Neurochem Int 40:449–453

    Article  PubMed  CAS  Google Scholar 

  • Bonan CD, Dias MM, Battastini AM, Dias RD, Sarkis JJ (1998) Inhibitory avoidance learning inhibits ectonucleotidases activities in hippocampal synaptosomes of adult rats. Neurochem Res 23:977–982

    Article  PubMed  CAS  Google Scholar 

  • Bonan CD, Roesler R, Pereira GS, Battastini AM, Izquierdo I, Sarkis JJ (2000) Learning-specific decrease in synaptossomal ATP diphosphohydrolase activity from hippocampus and entorhinal cortex of adults rats. Brain Res 31:253–256

    Article  Google Scholar 

  • Van den Bosch RA, du Maine APM, Geuze HJ, van der Ende A, Strous GJ (1988) Recycling of 5′-nucleotidase in a rat hepatoma cell line. EMBO J 7:3345–3351

    PubMed  Google Scholar 

  • Braun N, Zhu Y, Krieglstein J, Culmsee C, Zimmermann H (1998) Upregulation of the enzyme chain hydrolysing extracellular ATP after transient forebrain ischemia in the rat. J Neurosci 18:4891–4900

    PubMed  CAS  Google Scholar 

  • Braun N, Sevigny J, Robson SC, Enjyoji K, Guckelberger O, Hammer K, Di Virgilio F, Zimmermann H (2000) Assignment of ecto-nucleoside triphosphate diphosphohydrolase-1/cd39 expression to microglia and vasculature of the brain. Eur J Neurosci 12:4357–4366

    Article  PubMed  CAS  Google Scholar 

  • Braun N, Sévigny J, Mishra SK, Robson SC, Barth SW, Gerstberger R, Hammer K, Zimmermann H (2003) Expression of the ecto-ATPase NTPDase2 in the germinal zones of the developing and adult rat brain. Eur J Biochem 17:1355–1364

    Google Scholar 

  • Cammer W, Tansey FA, Sacchi R (1986) Antibody against mouse liver 5′-nucleotidase immunostains white matter in the adult mouse central nervous system. J Neurol Sci 73:155–167

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Wieraszko A, Hogan MV, Yang H-A, Kornecki E, Ehrlich YH (1996) Surface protein phosphorilation by ecto-protein kinase is required for the maintenance of hippocampal long-term potentiation. Proc Natl Acad Sci USA 93:8688–8693

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA, Sebastiao AM, Ribeiro JA (1992) Ecto-5′-nucleotidase is associated with cholinergic nerve terminals in the hippocampus but not in the cerebral cortex of the rat. J Neurochem 59:657–666

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA, Vizi SE, Ribeiro JA, Sebastiao AM (1996) Preferential release of ATP and its extracellular catabolism as a source of adenosine upon high- but not low-frequency stimulation of rat hippocampal slices. J Neurochem 67:2180–2187

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA, Sebastiao AM, Ribeiro JA (1998) Inhibition by ATP of hippocampal synaptic transmission requires localized extracellular catabolism by ecto-nucleotidases into adenosine and channeling to adenosine A1 receptors. J Neurosci 18:1987–1995

    PubMed  CAS  Google Scholar 

  • Cunha RA, Brendel P, Zimmermann H, Ribeiro JA (2000) Immunologically distinct isoforms of ecto-5′-nucleotidase in nerve terminals of different areas of the rat hippocampus. J Neurochem 74:334–338

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Diao L, Proctor WR (1997) Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J Neurosci 17:7673–7682

    PubMed  CAS  Google Scholar 

  • Ehrlich YH, Davis TB, Bock E, Kornecki E, Lenox RH (1986) Ecto-protein kinase activity on the external surface of neural cells. Nature 320:67–70

    Article  PubMed  CAS  Google Scholar 

  • Enjyoji K, Sévigny J, Lin Y, Frenette P, Christie PD, Esch JSA, Imai M, Edelberger JM, Rayburn H, Lech M, Beeler DM, Csizmadia E, Wagner DD, Robson SC, Rosemberg RD (1999) Targeted disruption of CD39/ATP diphosphohydrolase results in disordered hemostasis and tromboregulation. Nature Med 5:1010–1017

    Article  PubMed  CAS  Google Scholar 

  • Franco R, Canela EI, Bozal J (1986) Heterogeneous localization of some purine enzymes in subcellular fractions of rat brain and cerebellum. Neurochem Res 11:423–435

    Article  PubMed  CAS  Google Scholar 

  • Fujii S (2004) ATP- and adenosine-mediated signaling in the central nervous system: the role of extracellular ATP in hippocampal long-term potentiation. J Pharmacol Sci 94:103–106

    Article  PubMed  CAS  Google Scholar 

  • Gulyás AI, Toth K, McBain CJ, Freund TF (1998) Stratum radiatum giant cells: a type of principal cells in the rat hippocampus. Eur J Neurosci 10:3813–3822

    Article  PubMed  Google Scholar 

  • Heine P, Braun N, Heilbronn A, Zimmermann H (1999) Functional characterization of rat ecto-ATPase and ecto-ATP diphosphohydrolase after heterologous expression in CHO cells. Eur J Biochem 262:102–107

    Article  PubMed  CAS  Google Scholar 

  • Illes P, Norenberg W (1993) Neuronal ATP receptors and their mechanism of action. Trends Pharmacol Sci 14:50–54

    Article  PubMed  CAS  Google Scholar 

  • Kansas GS, Wood GS, Tedder TF (1991) Expression, distribution, and biochemistry of human CD39. Role in activation-associated homotypic adhesion of lymphocytes. J Immunol 146:2235–2244

    PubMed  CAS  Google Scholar 

  • Kawamura M, Gachet C, Inoue K, Kato F (2004) Direct excitation of inhibitory interneurons by extracellular ATP mediated by P2Y1 receptors in the hippocampal slice. J Neurosci 24:10835–10845

    Article  PubMed  CAS  Google Scholar 

  • Kegel B, Braun N, Heine P, Maliszewski CR, Zimmermann H (1997) An ecto-ATPase and an ecto-ATP diphosphohydrolase are expressed in rat brain. Neuropharmacology 36:1189–1200

    Article  PubMed  CAS  Google Scholar 

  • Kennedy C, Leff P (1995) Painful connection for ATP. Nature 3:385–386

    Article  Google Scholar 

  • King BF, Townsend-Nicholson A, Burnstock G (1998) Metabotropic receptors for ATP and UTP: exploring the correspondence between native and recombinant nucleotide receptors. Trends Pharmacol Sci 19:506–514

    Article  PubMed  CAS  Google Scholar 

  • Kreutzberg GW, Heymann D, Reddington M (1986) 5′-nucleotidase in the nervous system. In: Kreutzberg GW, Reddington M, Zimmermann H (eds) Cellular biology of ectoenzymes. Springer-Verlag, Berlin, pp 147–164

    Google Scholar 

  • von Kugelgen I, Spath L, Starke K (1994) Evidence for P2-purinoceptormediated inhibition of noradrenaline release in rat brain cortex. Br J Pharmacol 113:815–822

    Google Scholar 

  • von Kugelgen I, Koch H, Starke K (1997) P2-receptor-mediated inhibition of serotonin release in the rat brain cortex. Neuropharmacology 36:1221–1227

    Article  Google Scholar 

  • Kukley M, Stausberg P, Adelmann G, Iain PC, Dietrich D (2004) Ecto-nucleotidases and nucleoside transporters mediate activation of adenosine receptors on hippocampal mossy fibers by P2X7 receptor agonist. J Neurosci 24:7128–7139

    Article  PubMed  CAS  Google Scholar 

  • Kukulski F, Komoszynski M (2003) Purification and characterization of NTPDase 1 (ecto-apyrase) and NTPDase 2 (ecto-ATPase) from porcine brain cortex synaptosomes. Eur J Biochem 270:3447–3454

    Article  PubMed  CAS  Google Scholar 

  • Lavoie EG, Kukulski F, Levesque SA, Lecka J, Sevigny J (2004) Cloning and characterization of mouse nucleoside triphosphate diphosphohydrolase-3. Biochem Pharmacol 67:1917–1926

    Article  PubMed  CAS  Google Scholar 

  • Lee KS, Schubert P, Reddington M, Kreutzberg GW (1986) The distribution of adenosine A1 receptors and 5′-nucleotidase in the hippocampal formation of several mammalian species. J Comp Neurol 246:427–434

    Article  PubMed  CAS  Google Scholar 

  • Martin E, Buño W (2005) Stabilizing effects of extracellular ATP on synaptic efficacy and plasticity in hippocampal pyramidal neurons. Eur J Neurosci 21:936–944

    Article  PubMed  Google Scholar 

  • Masino SA, Diao I, Illes P, Zahniser NR, Larson GA, Johanson B, Fredholm BB, Dunwiddie TV (2002) Modulation of hippocampal glutaminergic transmission by ATP is dependant on adenosine A1 receptors. J Pharmacol Exp Ther 303:356–363

    Article  PubMed  CAS  Google Scholar 

  • de Mendonca A, Costenla AR, Ribeiro JA (2002) Persistence of the neuromodulatory effects of adenosine on synaptic transmission after long-term potentiation and long-term depression. Brain Res 5:56–60

    Article  Google Scholar 

  • Nacimiento W, Kreutzberg GW (1990) Cytochemistry of 5′-nucleotidase in the superior cervical ganglion of the rat: effects of pre- and postganglionic axotomy.Exp. Neurology 109:362–373

    CAS  Google Scholar 

  • Neary JT, Kang Y, Bu Y, Yu E, Akong K, Peters CM (1999) Mitogenic signaling by ATP/P2Y purinergic receptors in astrocytes: involvement of a calcium-independent protein kinase C, extracellular signal-regulated protein kinase pathway distinct from the phosphatidylinositol-specific phospholipase C/calcium pathway. J Neurosci 19:4211–4220

    PubMed  CAS  Google Scholar 

  • Nedeljkovic N, Banjac A, Horvat A, Stojiljkovic M, Nikezic G (2003) Ecto-ATPase and ecto-ATP-diphosphohydrolase are co-localized in rat hippocampal and caudate nucleus synaptic plasma membranes. Physiol Res 52:797–804

    PubMed  CAS  Google Scholar 

  • Nedeljkovic N, Bjelobaba I, Subasic S, Lavrnja I, Pekovic S, Stojkov D, Vjestica A, Rakic L, Stojiljkovic M (2006) Up-regulation of ectonucleotidase activity after cortical stab injury in rats. Cell Biol Int 30:541–546

    Article  PubMed  CAS  Google Scholar 

  • Ochiisshi T, Chen L, Yukawa A, Saitoh Y, Sekino Y, Arai T, Nakata H, Miyamoto H (1999) Cellular localization of adenosine A1 receptors in rat forebrain: immunohistochemical analysis using adenosine A1 receptor-specific monoclonal antibody. J Comp Neurol 411:301–316

    Article  Google Scholar 

  • Pankratov Y, Lalo U, Verkhratsky A, North RA (2006) Vesicular release of ATP at central synapses. Pflugers Arch Eur J Physiol 452:589–597

    Article  CAS  Google Scholar 

  • Pedrazza EL, Riboldi GP, Pereira GS, Izquierdo I, Bonan CD (2007) Habituation to an open field alters ecto-nucleotidase activities in rat hippocampal synaptosomes. Neurosci Lett 413:21–24

    Article  PubMed  CAS  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  • Richardson PJ, Brown SJ, Bailyes EM, Luzio JP (1987) Ectoenzymes control adenosine modulation of immunoisolated cholinergic synapses. Nature 327:232–234

    Article  PubMed  CAS  Google Scholar 

  • Ross FM, Brodie MJ, Stone TW (1998) Adenosine monophosphate as a mediator of ATP effects at P1 purinoceptors. Brit J Pharmacol 124:818–824

    Article  CAS  Google Scholar 

  • Scemes E, Suadicani SO, Spray DC (2000) Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J Neurosci 20:1435–1445

    PubMed  CAS  Google Scholar 

  • Schoen SW, Graeber MB, Reddington M, Kreutzberg GW (1987) Light and electron microscopical immunocytochemistry of 5′-nucleotidase in rat cerebellum. Histochemistry 87:107–113

    Article  PubMed  CAS  Google Scholar 

  • Schoen SW, Graeber MB, Toth L, Kreutzberg GW (1988) 5′-Nucleotidase in postnatal ontogeny of rat cerebellum: a marker for migrating nerve cells? Brain Res 467:125–136

    PubMed  CAS  Google Scholar 

  • Schoen SW, Ebert U, Loscher W (1999) 5′-Nucleotidase activity of mossy fibers in the dentate gyrus of normal and epileptic rats. Neuroscience 93:519–526

    Article  PubMed  CAS  Google Scholar 

  • Smith TM, Kirley TL (1999) Glycosylation is essential for functional expression of a human brain ecto-apyrase. Biochemistry 38:1509–1516

    Article  PubMed  CAS  Google Scholar 

  • Song Z, Sladek CD (2005) Does conversion of ATP to adenosine terminate ATP-stimulated vasopressin release from hypothalamo-neurohypophyseal explants? Brain Res 1047:105–111

    Article  PubMed  CAS  Google Scholar 

  • Volonte C, Merlo D, Ciotti MT, Calissano P (1994) Identification of an ectokinase activity in cerebellar granule primary neurons. J Neurochem 63:2028–2037

    Article  PubMed  CAS  Google Scholar 

  • Vorhoff T, Zimmermann H, Pelletier J, Sevigny J, Braun N (2005) Cloning and characterization of the ecto-nucleotidase NTPDase3 from rat brain: predicted secondary structure and relation to other members of the E-NTPDase family and actin. Purinergic Signal 1:259–270

    Article  CAS  PubMed  Google Scholar 

  • Wang T-F, Guidotti G (1998) Widespread expression of ecto-apyrase (CD39) in the central nervous system. Brain Res 790:318–322

    Article  PubMed  CAS  Google Scholar 

  • Wink MR, Braganhol E, Tamajusuku AS, Lenz G, Zerbini LF, Libermann TA, Sevigny J, Battastini AM, Robson SC (2006) Nucleoside triphosphate diphosphohydrolase-2 (NTPDase2/CD39L1) is the dominant ectonucleotidase expressed by rat astrocytes. Neuroscience 138:421–432

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H (1992) 5′-Nucleotidase: molecular structure and functional aspects. Biochem J 285:345–365

    PubMed  CAS  Google Scholar 

  • Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Nanyn-Schmiedeberg’s Arch Pharmacol 362:299–309

    Article  CAS  Google Scholar 

  • Zimmermann H, Braun N (1999) Ecto-nucleotidases: molecular structures, catalytic properties, and functional roles in the nervous system. Prog Brain Res 120:371–385

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H, Vogel M, Laube U (1993) Hippocampal localization of 5′-nucleotidase as revealed by immunocytochemistry. Neuroscience 55:105–112

    Article  PubMed  CAS  Google Scholar 

  • Zinchuk VS, Okada T, Kobayashi T (1999) Detection of ecto-ATPase activity in synaptic plasma membranes for studying extracellular ATP induced signal transduction. Brain Res Prot 4:258–265

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr Stanko Stojilkovic, National Institute for Health, Bethesda, MD, USA for his valuable suggestions and help. The study was supported by Serbian Ministry of Science and Environmental Control Grant No. 143005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezda Nedeljkovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjelobaba, I., Stojiljkovic, M., Pekovic, S. et al. Immunohistological Determination of Ecto-nucleoside Triphosphate Diphosphohydrolase1 (NTPDase1) and 5′-nucleotidase in Rat Hippocampus Reveals Overlapping Distribution. Cell Mol Neurobiol 27, 731–743 (2007). https://doi.org/10.1007/s10571-007-9159-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-007-9159-8

Keywords

Navigation