Skip to main content

Advertisement

Log in

Short-Term Effects of Thyroid Hormones on Cytoskeletal Proteins Are Mediated by GABAergic Mechanisms in Slices of Cerebral Cortex from Young Rats

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

 

Thyroid hormones play important roles in brain function. However, few information is available about the effect of 3,5,3′-triiodo-l-thyronine (T3) or thyroxine (T4) on the in vitro phosphorylation of intermediate filament (IF) proteins from cerebral cortex of rats. In this study we investigated the involvement of GABAergic mechanisms mediating the effects of T3 and T4 on the in vitro incorporation of 32P into IF proteins from cerebral cortex of 10-day-old male rats. Tissue slices were incubated with or without T3, T4, γ-aminobutiric acid (GABA), kinase inhibitors or specific GABA antagonists and 32P-orthophosphate for 30 min. The IF-enriched cytoskeletal fraction was extracted in a high salt Triton-containing buffer and the in vitro 32P incorporation into IF proteins was measured. We first observed that 1 μM T3 and 0.1 μM T4 significantly increased the in vitro incorporation of 32P into the IF proteins studied through the PKA and PKCaMII activities. A similar effect on IF phosphorylation was achieved by incubating cortical slices with GABA. Furthermore, by using specific GABA antagonists, we verified that T3 induced a stimulatory effect on IF phosphorylation through noncompetitive mechanisms involving GABAA, beyond GABAB receptors. In contrast, T4 effects were mediated mainly by GABAB mechanisms. In conclusion, our results demonstrate a rapid nongenomic action of T3 and T4 on the phosphorylating system associated to the IF proteins in slices of cerebral cortex of 10 day-old male rats and point to GABAergic mechanisms mediating such effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  • Ackerley, S., Grierson, A. J., Brownlees, J., Thornhiel, P., Anderton, B. H., Leight, P. N., Shew, C. E., and Mielerc, C. J. (2000). Glutamate slow axonal transport of neurofilaments in transfected neurons. J. Cell Biol. 150:165–175.

    Article  PubMed  CAS  Google Scholar 

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2002). The cytoskeleton. In Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (eds.), Molecular Biology of the Cell, Garland Science, New York, pp. 907–982.

    Google Scholar 

  • Bernal, J. (2002). Action of thyroid hormone in brain. J. Endocrinol. Invest. 25:268–288.

    PubMed  CAS  Google Scholar 

  • Chapell, R., Martin, J., Machu, T. K., and Leidenheimer, N. J. (1998). Direct cannel-gating and modulatory effects of riiodothyronine on recombinant GABA (A) receptors. Eur. J. Pharmacol. 349:115–121.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Chen, P. L., Chen, C. F., Sharp, Z. D., and Lee, W. T. (1999). Thyroid hormone, T3-dependent phosphorylation and translocation of Trip230 from the Golgi complex to the nucleus. Proc. Natl. Acad. Sci. U.S.A. 96:4443–4448.

    Article  PubMed  CAS  Google Scholar 

  • Chijiwa, T., Mishima, A., Hagiwara, M., Sano, M., Hayashi, K., Inoue, T., Naito, K., Toshioka, T., and Hidaka, H. (1990). Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (h-89), of PC12D pheochromocytoma cells. J. Biol. Chem. 265:5267–5272.

    PubMed  CAS  Google Scholar 

  • Davis, P. J., Shih, A., Lin, H. Y., Martino, L. J., and Davis, F. B. (2000). Thyroxine promotes association of mitogen-activated protein kinase and nuclear thyroid hormones receptor (TR) and causes serine phosphorylation of TR. J. Biol. Chem. 275:38032–38039.

    Article  PubMed  CAS  Google Scholar 

  • Davis, P. J., Tillmann, H. C., Davis, F. B., and Wehling, M. (2002). Comparison of the mechanisms of nongenomic actions of thyroid hormone and steroid hormones. J. Endocrinol. Invest. 25:377–388.

    PubMed  CAS  Google Scholar 

  • Eng, L. F., Ghirnikar, R. S., and Lee, Y. L. (2000). Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem. Res. 25:1439–1451.

    Article  PubMed  CAS  Google Scholar 

  • Freitas, M. S., de Mattos, A. G., Camargo, M. M., Wannmacher, C. M. D., and Pessoa-Pureur, R. (1995). Cytoskeletal-associated protein kinase and phosphatase activities from cerebral cortex of young rats. Neurochem. Res. 20:951–956.

    Article  PubMed  Google Scholar 

  • Funchal, C., Vieira de Almeida, L. M., Oliveira Loureiro, S., Vivian, L., de Lima Pelaez, P., Dall Bello Pessutto, F., Rosa, A. M., Wajner, M., and Pessoa-Pureur, R. (2003). In vitro phosphorylation of cytoskeletal proteins from cerebral cortex of rats. Brain Res. Protein 11:111–118.

    Article  CAS  Google Scholar 

  • Gaiarsa, J.-L., Caillard, O., and Ben-Ari, Y. (2002). Long-term plasticity at GABAergic and glycinergic synapses: Mechanisms and functional significance. Trends Neurosci. 25:564–570.

    Article  PubMed  CAS  Google Scholar 

  • Gotow, T., Tanaka, T., Nakamura, Y., and Takeda, M. (1994). Dephosphorylation of the largest neurofilament subunit protein influences the structure of crossbridges in reassembled neurofilaments. J. Cell Sci. 107:1949–1957.

    PubMed  CAS  Google Scholar 

  • Guidato, S., Tsai, L. H., Woodgett, J., and Miller, C. C. (1996). Differential cellular phosphorylation of neurofilament heavy side arms by glycogen synthase kinase-3 and cyclin-dependent kinase-5. J. Neurochem. 66:1698–1706.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, N. L. (1990). On the presynaptic action of baclofen at inhibitory synapses between cultured rat hippocampal neurones. J. Physiol. (Lond.) 422:433–446.

    CAS  Google Scholar 

  • Hashimoto, R., Nakamura, Y., Goto, H., Wada, Y., Sakoda, S., and Kaibuchi, K. (1998). Domain- and site- specific phosphorylation of bovine NF-L by Rho-associated kinase. Biochem. Biophys. Res. Commun. 245:407–411.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, H., Walker, C. H., Prange, A. J. Jr., and Mason, G. A. (1991). The effects of thyroid hormones on potassium-stimulated release of 3H-GABA by synaptosomes of rat cerebral cortex. Neuropsychopharmacology 5:49–54.

    PubMed  CAS  Google Scholar 

  • Hisanaga, S., Yasugawa, S., Yamakawa, T., Miyamoto, E., Ikebe, M., Uchiyama, M., and Kishimoto, T. (1993). Dephosphorylation of microtubule-binding sites at the neurofilament-H tail domain by alkaline, acid, and protein phosphatases. J. Biochem. (Tokyo) 113:705–709.

    CAS  Google Scholar 

  • Ho, W. H., Wang, S. M., and Yin, H. S. (2001). Regulation of the subcellular distribution and gene expression of GABA(A) receptor by microtubules and microfilaments in cultured brain neurons. J. Cell. Biochem. 83:291–303.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh, S. T., Kidd, G. J., Crawforg, T. O., Xu, Z., Lin, W. M., Trapp, B. D., Cleveland, D. W., and Griffin, J. W. (1994). Regional modulation of neurofilament organization by myelination in normal axons. J. Neurosci. 14:6392–6401.

    PubMed  CAS  Google Scholar 

  • Huang, C. J., Geller, H. M., Green, W. L., and Craelius, W. (1999). Acute effect of thyroid hormone analogs on sodium currents in neonatal rat myocytes. J. Mol. Cell. Cardiol. 31:881–893.

    Article  PubMed  CAS  Google Scholar 

  • Inada, H., Goto, H., Tanabe, K., Nishi, Y., Kaibuchi, K., and Inagaki, M. (1998). Rho-associated kinase phosphorylates desmin, the myogenic intermediate filament protein, at unique amino-terminal sites. Biochem. Biophys. Res. Commun. 253:21–25.

    Article  PubMed  CAS  Google Scholar 

  • Inagaki, M., Gonda, Y., Nishizawa, K., Kitamura, S., Sato, C., and Ando, S. (1990). Phosphorylation sites linked to glial filament disassembly in vitro located in a non-alpha-helical head domain. J. Biol. Chem. 265:4722–4729.

    PubMed  CAS  Google Scholar 

  • Inagaki, M., Nishi, Y., Nishizawa, K., Matsuyama, M., and Sato, C. (1987). Site-specific phosphorylation induces disassembly of vimentin filaments in vitro. Nature 328:649–652.

    Article  PubMed  CAS  Google Scholar 

  • Incerpi, S., De Vito, P., Luly, P., Spagnuolo, S., and Leoni, S. (1999a). Short-term effect of tyroid hormones and 3,5-diiodothyronine on membrane transport systems in chick embryo hepatocytes. Endocrinology 143:1660–1668.

    Article  Google Scholar 

  • Incerpi, S., Luly, P., De Vito, P., and Farias, R. N. (1999b). Short-term effects of thyroid hormones on the Na/H antiport in L-6 myoblasts: high molecular specificity for 3,3′,5-triiodo-L-thyronine. Endocrinology 140:683–689.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, G. A. R. (1996). GABAC receptors: Relatively simple transmitter-gated ion channels? Trends Pharmacol. Sci. 17:319–323.

    Article  PubMed  CAS  Google Scholar 

  • Komatsu, Y. (1996). GABAB receptors, monoamine receptors, and postsynaptic inositol triphopshate-induced Ca2+ release are involved in the induction of long-term potentiation at visual cortical inhibitory synapses. J. Neurosci. 16:6342–6352.

    PubMed  CAS  Google Scholar 

  • Ku, N. O., and Omary, M. B. (1997). Phosphorylation of human keratin 8 in vivo at conserved head domain serine 23 and at epidermal growth factor-stimulated tail domain serine 431. J. Biol. Chem. 272:7556–7564.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685.

    Article  Google Scholar 

  • Lazar, M. A. (1993). Thyroid hormone receptors: Multiple forms, multiple possibilities. Endocrinol. Rev. 14:184–193.

    Article  CAS  Google Scholar 

  • Leterrier, J. F., Kas, J., Hartwig, J., Vegners, R., and Janmey, P. A. (1996). Mechanical effects of neurofilament cross-bridges. Modulation by phosphorylation, lipids, and interactions with F-actin. J. Biol. Chem. 271:15687–15694.

    Article  PubMed  CAS  Google Scholar 

  • Lin, H.-Y., Davis, F. B., Gordinier, J. K., Martino, L. J., and Davis, P. J. (1999). Thyroid hormone induces activation of mitogen-activated protein kinase in cultured cells. Am. J. Physiol. 276:C1014–C1024.

    PubMed  CAS  Google Scholar 

  • Lin, H.-Y., Thacore, H. R., Davis, F. B., and Davis, P. J. (1996). Potentiation by tyroxine of interferon-gamma-induced antiviral state requires PKA and PKC activities. Am. J. Physiol. 271:C1256–C1261.

    PubMed  CAS  Google Scholar 

  • Lin, H.-Y., Yen, P. M., Davis, F. B., and Davis, P. J. (1997). Protein synthesis-dependent potentiation of thyroxine of antiviral activity of interferon-gamma. Am. J. Physiol. 273:C1225–1232.

    PubMed  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–267.

    PubMed  CAS  Google Scholar 

  • MacDonald, R. L., and Olsen, R. W. (1994). GABAA receptor channels. Annu. Rev. Neurosci. 17:569–602.

    PubMed  CAS  Google Scholar 

  • Martin, J. V., Williams, D. B., Fitzgerald, R. M., Im, H. K., and Vonvoigtlander, P. F. (1996). Thyroid hormonal modulation of the binding and activity of the GABAA receptor complex of brain. Neuroscience 73:705–713.

    Article  PubMed  CAS  Google Scholar 

  • Mason, G. A., Walker, C. H., and Prange, A. J. Jr. (1987). Modulation of gamma-aminobutyric acid uptake of rat brain synaptosomes by thyroid hormones. Neuropsychopharmacology 1:63–70.

    Article  PubMed  CAS  Google Scholar 

  • Narihara, R., Hirouchi, M., Ichida, T., Kuriyama, K., and Roberts, E. (1994). Effects of thyroxine and its related compounds on cerebral GABA receptors: Inhibitory action on benzodiazepine recognition site in GABAA receptor complex. Neurochem. Int. 25:451–454.

    Article  PubMed  CAS  Google Scholar 

  • Nixon, R. A., and Sihag, R. K. (1991). Neurofilament phosphorylation: A new look at regulation and function. Trends Neurosci. 14:501–506.

    Article  PubMed  CAS  Google Scholar 

  • Olsen, R. W., and DeLorey, T. M. (1999). GABA and glicine. In Siegel, G. J., Agranoff, B. W., Albers, R. W., Fisher, S. K., and Uhler, M. D. (eds.), Basic Neurochemistry, Lippincott-Raven, New York, pp. 335–346.

    Google Scholar 

  • Paramio, J. M., and Jorcano, J. L. (2002). Beyond structure: Do intermediate filaments modulate cell signalling? Bioessays 24:836–844.

    Article  PubMed  CAS  Google Scholar 

  • Paul, S., Gharami, K., Das, S., and Sarkar, P. K. (1999). Thyroid hormone-induced maturation of astrocytes is associated with the expression of new variants of vimentin and their phosphorylation. J. Neurochem. 73:1964–1972.

    PubMed  CAS  Google Scholar 

  • Peter, M., Sanghera, J. S., Pelech, S. S., and Nigg, E. A. (1992). Mitogen-activated protein kinases phosphorylate nuclear lamins and display sequence specificity overlapping that of mitotic protein kinase p34 cdc2. Eur. J. Biochem. 205:287–294.

    Article  PubMed  CAS  Google Scholar 

  • Porter, J. T., and McCarthy, K. D. (1997). Astrocytic neurotransmitter receptors in situ and in vivo. Prog. Neurobiol. 51:439–455.

    Article  PubMed  CAS  Google Scholar 

  • Rosewater, K., and Sontheimer, H. (1994). Fibrous and protoplasmic astrocytes express GABAA receptors that differ in benzodiazepine pharmacology. Brain Res. 636:73–80.

    Article  PubMed  CAS  Google Scholar 

  • Runquist, M., and Alonso, G. (2003). GABAergic signaling mediates the morphological organization of astrocytes in the adult rat forebrain. Glia 41:137–151.

    Article  PubMed  Google Scholar 

  • Safran, M., Farwell, A. P., and Leonard, J. L. (1992). Thyroid hormone-dependent redistribution of the 55-kilodalton monomer of protein disulfide isomerase in cultured glial cells. Endocrinology 131:2413–2418.

    Article  PubMed  CAS  Google Scholar 

  • Sandrini, M., Marrama, D., Vergoni, A. V., and Bertolini, A. (1991). Effects of thyroid status on the characteristics of alpha 1-, alpha 2-, beta, imipramine and GABA receptors in the rat brain. Life Sci. 48:659–666.

    Article  PubMed  CAS  Google Scholar 

  • Segal, J. (1989). Action of the thyroid hormone at the level of the plasma membrane. Endocrinol. Res. 15:619–649.

    Article  CAS  Google Scholar 

  • Shetty, K. T., Kink, W. T., and Pant, H. C. (1993). Cdc-like kinase from rat spinal cord specifically phosphorylates KSPXK motifs in neurofilament proteins: Isolation and characterization. Proc. Natl. Acad. Sci. U.S.A. 90:6844–6848.

    Article  PubMed  CAS  Google Scholar 

  • Siegrist-Kaiser, C., Juge-Aubry, C., Tranter, M., Ekenbarger, D., and Leonard, J. (1990). Thyroxine-dependent modulation of actin polymerization in cultured astrocytes. A novel, extranuclear action of thyroid hormone. J. Biol. Chem. 265:5296–5302.

    PubMed  CAS  Google Scholar 

  • Sihag, R. K., and Nixon, R. A. (1990). Phosphorylation of the amino terminal head domain of the middle molecular mass 145 kDa subunit of neurofilaments. J. Biol. Chem. 265:4166–4171.

    PubMed  CAS  Google Scholar 

  • Silva, F. R., Leite, L. D., Barreto, K. P., D’Agostini, C., and Zamoner, A. (2001). Effect of 3,5,5′-triiodo-L-thyronine on amino acid accumulation and membrane potential in Sertoli cells of the rat testis. Life Sci. 69:977–986.

    Article  PubMed  CAS  Google Scholar 

  • Silva, F. R. M. B., Leite, L. D., and Wassermann, G. F. (2002). Rapid signal transduction in Sertoli cells. Eur. J. Endocrinol. 147:425–433.

    Article  PubMed  CAS  Google Scholar 

  • Sun, D., Leung, C. L., and Liem, R. K. H. (1996). Phosphorylation of the high molecular weight neurofilament protein (NF-H) by Cdk5 and p35. J. Biol. Chem. 271:14245–14251.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, J., Ogawara, M., Ando, S., Shibata, M., Yatani, R., and Kusagawa, M. (1993). Phosphorylation of a 62 kd porcine alpha-internexin, a newly identified intermediate filament protein. Biochem. Biophys. Res. Commun. 196:115–123.

    Article  PubMed  CAS  Google Scholar 

  • Tokumitsu, H., Chijiwa, T., Hagiwara, M., Mizutani, A., Terasawa, M., and Hidaka, H. (1990). Kn62,1-N,O-Bis-[(5-isoquino-linesulfonyl)-N-methy-(-tyrisyl)]-4-phenylpiperazine, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem. 265:5315–5320.

    Google Scholar 

  • Volpato, K. C., Menegaz, D., Leite, L. D., Barreto, K. P., Garcia, E. V., and Silva, F. R. M. B. (2004). Involvement of K+ channels and calcium-dependent pathways in the action of T3 on amino acid accumulation and membrane potential in Sertoli cells of immature rat testis. Life Sci. 74:1277–1288.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., and Olsen, R. W. (2000). Binding of the GABA(A) receptor-associated protein (GABARAP) to microtubules and microfilaments suggests involvement of the cytoskeleton in GABARAPGABA(A) receptor interaction. J. Neurochem. 75:644–655.

    Article  PubMed  CAS  Google Scholar 

  • Zamoner, A., Frasson Corbelini, P., Funchal, C., Menegaz, D., Mena Barreto Silva, F. R., and Pessoa Pureur, R. (2005). Involvement of calcium-dependent mechanisms on the action of T3 in the in vitro phosphorylation of vimentin of immature rat testis. Life Sci. 77:3321–3335.

  • Zhu, X. G., Hanover, J., Hager, G, and Cheng, S. Y. (1998). Hormone-induced translocation of thyroid hormone receptors in living cells visualized under a receptor green fluorescent protein chimera. J. Biol. Chem. 273:27058–27063.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), and PROPESq-UFRGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Pessoa-Pureur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamoner, A., Funchal, C., Heimfarth, L. et al. Short-Term Effects of Thyroid Hormones on Cytoskeletal Proteins Are Mediated by GABAergic Mechanisms in Slices of Cerebral Cortex from Young Rats. Cell Mol Neurobiol 26, 209–224 (2006). https://doi.org/10.1007/s10571-006-9027-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9027-y

KEY WORDS:

Navigation