Skip to main content

Advertisement

Log in

α-Tocopherol and Ascorbic Acid Administration Prevents the Impairment of Brain Energy Metabolism of Hyperargininemic Rats

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1 We have previously demonstrated that arginine administration induces oxidative stress and compromises energy metabolism in rat hippocampus. In the present study we initially investigated the influence of pretreatment with α-tocopherol and ascorbic acid on the effects produced by arginine on hippocampus energy metabolism. We also tested the effect of acute administration of arginine on various parameters of energy metabolism, namely glucose uptake, lactate release and on the activities of succinate dehydrogenase, complex II and cytochrome c oxidase in rat cerebellum, as well as the influence of pretreatment with α-tocopherol and ascorbic acid on the effects elicited by arginine on this structure.

2. Sixty-day-old female Wistar rats were treated with a single i.p. injection of saline (control) or arginine (0.8 g/kg) and were killed 1 h later. In another set of experiments, the animals were pretreated for 1 week with daily i.p. administration of saline (control) or α-tocopherol (40 mg/kg) and ascorbic acid (100 mg/kg). Twelve hours after the last injection of the antioxidants the rats received one i.p. injection of arginine (0.8 g/kg) or saline and were killed 1 h later.

3. Results showed that arginine administration significantly increased lactate release and diminished glucose uptake and the activities of succinate dehydrogenase and complex II in rat cerebellum. In contrast, complex IV (cytochrome c oxidase) activity was not changed by this amino acid. Furthermore, pretreatment with α-tocopherol and ascorbic acid prevented the impairment of energy metabolism caused by hyperargininemia in cerebellum and hippocampus of rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  • Anderson, D. K. F., Waters, T. R., and Means, E. D. (1988). Pretreatment with α-tocopherol enhances neurologic recovery after experimental spinal cord compression injury. J. Neurotrauma 5:61–67.

    Article  PubMed  CAS  Google Scholar 

  • Bavaresco, C. S., Calcagnotto, T., Tagliari, B., Delwing, D., Lamers, M. L., Wannmacher, C. M. D., Wajner, M., and Wyse, A. T. S. (2002). Brain Na+, K+-ATPase inhibition induced by arginine administration is prevented by vitamins E and C. Neurochem. Res. 28:825–829.

    Article  Google Scholar 

  • Bitterman, N., and Bitterman, H. (1998). L-Arginine-NO pathway and CNS oxygen toxicity. J. Appl. Physiol. 84:1633–1638.

    PubMed  CAS  Google Scholar 

  • Blouin, J. S., Bard, C., and Paillard, J. (2004). Contribution of the cerebellum to self-initiated synchronized movements: a PET study. Exp. Brain Res. 155:63–68.

    Article  PubMed  Google Scholar 

  • Böger, R. H., Bode-Böger, S. M., Phivthong-ngam, L., Brandes, R. P., Schwedhelm, E., Mügge, A., Böhme, M., Tsikas, D., and Frölich, J. C. (1998). Dietary L-arginine and α-tocopherol reduce vascular oxidative stress and preserve endothelial function in hypercholesterolemic rabbits via different mechanisms. Atherosclerosis 141:31–43.

    Article  PubMed  Google Scholar 

  • Bowling, A. C., and Beal, M. F. (1995). Bioenergetic and oxidative stress in neurodegenerative diseases. Life Sci. 56:1151–1171.

    Article  PubMed  CAS  Google Scholar 

  • Brusilow, S. W., and Horwich, A. (2001). Urea cycle enzymes. In Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D. (eds.), The Metabolic and Molecular Bases of Inherited Disease, 8th Ed, McGraw-Hill, Inc., New York, pp. 1909–1963.

    Google Scholar 

  • Buchmann, I., Milakofsky, L., Harris, N., Hofford, J. M., and Vogel, W. H. (1996). Effect of arginine administration on plasma and brain levels of arginine and various related amino compounds in the rat. Pharmacology 53:33–142.

    Article  Google Scholar 

  • Carreau, A., Duval, D., Poignet, H., Scatton, B., Vigé, X., and Nowicki, J. P. (1994). Neuroprotective efficacy of Nω-nitro-L-arginine after focal cerebral ischemia in the mouse and inhibition of cortical nitric oxide synthase. Eur. J. Pharmacol. 256:241–249.

    Article  PubMed  CAS  Google Scholar 

  • Cederbaum, C. D., Shaw, K. N. F., Spector, E. B., Verity, M. A., Snodgrass, P. J., and Sugarmann, G. I. (1979). Hyperargininemia with arginase deficiency. Pediatr. Res. 13:827–833.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, V. L., and Dawson, T. M. (1996). Nitric oxide neurotoxicity. J. Chem. Neuroanat. 10:179–190.

    Article  PubMed  CAS  Google Scholar 

  • Debaere, F., Wenderoth, N., Sunaert, S., Van Hecke, P., and Swinnen, S. P. (2004). Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. Neuroimage 21:1416–1427.

    Article  PubMed  CAS  Google Scholar 

  • Delwing, D., Delwing, D., Wannamacher, C. M. D., Wajner, M., Dutra-Filho, C. S., and Wyse, A. T. S. (2002). Arginine administration reduces catalase activity in midbrain of rats. Neuroreport 13:1301–1304.

    Article  PubMed  CAS  Google Scholar 

  • Delwing, D., Tagliari, B., Streck, E. L., Wannmacher, C. M. D., Wajner, M., and Wyse, A. T. S. (2003). Reduction of energy metabolism in rat hippocampus by arginine administration. Brain Res. 983:58–63.

    Article  PubMed  CAS  Google Scholar 

  • Demchenko, I. T., Boso, A. E., Bennett, P. B., Whorton, R. A., and Piantadosi, C. A. (2000). Hyperbaric oxygen reduces cerebral blood flow by inactivating nitric oxide. Nitric oxide Biol. Chem. 4:597–608.

    Article  CAS  Google Scholar 

  • Demchenko, I. T., Atochin, D. N., Boso, A. E., Astern, J., Huang, P. L., and Piantadosi, C. A. (2003). Oxygen seizure latency and peroxynitrite formation in mice lacking neuronal or endothelial nitric oxide synthases. Neurosci. Lett. 344:53–56.

    Article  PubMed  CAS  Google Scholar 

  • D’Hooge, R., and De Deyn, P. P. (2001). Applications of the Morris water maze in the study of learning and memory. Brain Res. Brain Res. Rev. 36:60–90.

    Article  PubMed  CAS  Google Scholar 

  • Ding-Zhou, L., Marchand-Verrecchia, C., Croci, N., Plotkine, M., and Margaill, I. (2002). L-NAME reduces infarction, neurological deficit and blood-brain barrier disruption following cerebral ischemia in mice. Eur. J. Pharmacol. 457:137–146.

    Article  PubMed  Google Scholar 

  • Dutra, J. C., Wajner, M., Wannamacher, C. F., Dutra-Filho, C. S., and Wannamacher, C. M. D. (1991). Effects of methylmalonate and propionate on glucose and ketone bodies uptake in vitro by brain of developing rats. Biochem. Med. Metab. Biol. 45:56–64.

    Article  PubMed  CAS  Google Scholar 

  • Feigl, E. O. (1988). EDRF: a protective factor? Nature 331:490–491.

    Article  PubMed  CAS  Google Scholar 

  • Fighera, M. R., Queiroz, C. M., Stracke, M. P., Brauer, M. C., Gonzales-Rodriguez, L. L., Frussa-Filho, R., Wajner, M., and Mello, C. F. (1999). Ascorbic acid and α-tocopherol attenuate methylmalonic acid-induced convulsions. Neuroreport 10:2039–2043.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, J. C., Ruitenbeek, W., Berden, J. A., Trijbels, J. M., Veerkamp, J. H., Stadhouders, M. S., Sengers, R. C., and Janssen, A. J. (1985). Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin. Chim. Acta 153:23–36.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. C. (1985). Oxygen radicals and nervous system, Trends. Neurosci. 8:22–26.

    CAS  Google Scholar 

  • Hamda, Y., Hayakawa, T., Hattori, H.,and Mikawa, H. (1994). Inhibitor of nitric oxide synthesis reduces hypoxic-ischemic brain damage in the neonatal rat. Pediatr. Res. 35:10–14.

    Google Scholar 

  • Hara, H., Kato, H., and Kogure, K. (1990). Protective effect of α-tocopherol on ischemic neuronal damage in the gerbil hippocampus. Brain Res. 510:335–338.

    Article  PubMed  CAS  Google Scholar 

  • Heales, S. J. R., Bolaños, J. P., Stewart, V. C., Brookes, P. S., Land, J. M., and Clark, J. B. (1999). Nitric oxide, mitochondria and neurological disease. Biochem. Biophys. Acta. 1410:215–228.

    Article  PubMed  CAS  Google Scholar 

  • Hu, J. R., Ferreira, A., and Van Eldik, L. J. (1997). S100 beta induces neuronal cell death through nitric oxide release from astrocytes. J. Neurochem. 69:2294–2301.

    Article  PubMed  CAS  Google Scholar 

  • Iyer, R., Jenkinson, C. P., Vockley, J. G., Kern, R. M., Grody, W. W., and Cederbaum, S. (1998). The human arginases and arginase deficiency. J. Inher. Metab. Dis. 21:86–100.

    Article  PubMed  CAS  Google Scholar 

  • Kawano, H., Motoyama, T., Hirai, N., Kugiyama, K., Yasue, H., and Ogawa, H. (2002). Endothelial dysfunction in hypercholesterolemia is improved by L-arginine administration: possible role of oxidative stress. Atherosclerosis 161:375–380.

    Article  PubMed  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–267.

    PubMed  CAS  Google Scholar 

  • Maragos, F. W., and Silverstein, F. S. (1995). Inhibition of nitric oxide synthase activity attenuates striatal malonate lesions in rats. J. Neurochem. 64:2362–2365.

    Article  PubMed  CAS  Google Scholar 

  • Mügge, A., Brandes, R. P., Böger, R. H., Dwenger, A., Bode-Boger, S., Kienke, S., Frolich, J. C., and Lichtlen, P. R. (1994). Vascular release of superoxide radicals is enhanced in hypercholesterolemic rabbits. J. Cardiovasc. Pharmacol. 24:994–998.

    Article  PubMed  Google Scholar 

  • Oury, T. D., Ho, Y. S., Piantadosi, C. A., and Crapo, J. D. (1992). Extracellular superoxide dismutase, NO and central nervous system O2 toxicity. Proc. Natl. Acad. Sci. USA 89:9715–9719.

    Article  PubMed  CAS  Google Scholar 

  • Reis, E. A., Oliveira, L. S., Lamers, M. L., Netto, C. A., and Wyse, A. T. S. (2002). Arginine administration inhibits hippocampal Na+, K+-ATPase activity and impairs retention of an inhibitory avoidance task in rats. Brain Res. 951:151–157.

    Article  PubMed  Google Scholar 

  • Rustin, P., Chretien, D., Bourgeron, T., Gérard, B., Rötig, A., Saudubray, J. M., and Munnich, A. (1994). Biochemical and molecular investigations in respiratory chain efficiencies. Clin. Chim. Acta 228:35–51.

    Article  PubMed  CAS  Google Scholar 

  • Shimojo, N., Naka, K., Nakajima, C., Yoshikawa, C., Okuda, K., and Okada, K. (1989). Test-strip method for measuring lactate in whole blood. Clin. Chem. 35:1992–1994.

    PubMed  CAS  Google Scholar 

  • Squire, L. R. (2004). Memory systems of the brain: A brief history and current perspective. Neurobiology of Learning and Memory 82:171–177.

    Article  PubMed  Google Scholar 

  • Terheggen, H. G., Schwenk, A., Lowenthal, A., Van Sandh, M., and Colombo, J. P. (1969). Argininaemia with arginase deficiency. Lancet 2:748.

    Article  Google Scholar 

  • Trifeletti, R. R. (1992). NG-nitro-L-arginine in focal stroke in the 7 day old rat. Eur. J. Pharmacol. 218:197–198.

    Article  Google Scholar 

  • Trinder, P. A. (1969). Determination of blood glucose using on oxidase-peroxidase system with a non-carcinogenic chromogen. J. Clin. Pathol. 22:158–161.

    Article  PubMed  CAS  Google Scholar 

  • Van der Vliet, A., Smith, D., O'Neill, C. A., Kaur, H., Darley-Usmar, V., Cross, C. E., and Halliwell, B. (1994). Interactions of peroxynitrite with human plasma and its constituents: oxidative damage and antioxidant depletion. Biochem. J. 303:295–301.

    PubMed  CAS  Google Scholar 

  • Vasquez-Vivar, J., Santos, A. M., Junqueira, V. B. C., and Augusto, O. (1996). Peroxynitrite-mediated formation of free radicals in human plasma: EPR detection of ascorbyl, albumin-thiyl, and puric acid derived free radicals. Biochem. J. 314:869–876.

    PubMed  CAS  Google Scholar 

  • Vatassery, G. T. (1998). D. Geriatrics 53(Suppl 1):S25–S27.

    Google Scholar 

  • Vatassery, G. T., DeMaster, E. G., Lai, J. C. K., Smith, W. E., and Quach, H. T. (2004). Iron uncouples oxidative phosphorylation in brain mitochondria isolated from vitamin E-deficient rats. Biochim. Biophys. Acta 1688:265–273.

    PubMed  CAS  Google Scholar 

  • Wyse, A. T. S., Bavaresco, C. S., Bandinelli, C., Streck, E. L., Franzon, R., Dutra-Filho, C. S., and Wajner, M. (2001). Nitric oxide synthase inhibition by L-NAME prevents the decrease of Na+, K+-ATPase activity in midbrain of rats subjected to arginine administration. Neurochem. Res. 26:515–520.

    Article  PubMed  CAS  Google Scholar 

  • Wyse, A. T. S., Stefanello, F. M., Chiarani, F., Delwing, D., Wannmacher, C. M. D., and Wajner, M. (2004). Arginine administration decreases cerebral cortex acetylcholinesterase and serum butyrylcholinesterase probably by oxidative stress induction. Neurochem. Res. 29:385–389.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Su, Y., Oury, T. D., and Piantadosi, C. A. (1993). Cerebral aminoacid norepinephrine and nitric oxide metabolism in CNS oxygen toxicity. Brain Res. 606:56–62.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was supported in part by grants from CNPq and PRONEX/ CNPq/FAPERGS, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Terezinha de Souza Wyse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delwing, D., Tagliari, B., Chiarani, F. et al. α-Tocopherol and Ascorbic Acid Administration Prevents the Impairment of Brain Energy Metabolism of Hyperargininemic Rats. Cell Mol Neurobiol 26, 177–189 (2006). https://doi.org/10.1007/s10571-006-9022-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9022-3

KEY WORDS:

Navigation