Skip to main content

Advertisement

Log in

Rostrocaudal Somatotopy in the Neural Connections Between the Lateral Hypothalamus and the Dorsal Periaqueductal Gray of the Rat Brain

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1. The lateral hypothalamus (LH) and the dorsal periaqueductal gray area (dPAG) are two important brain structures involved in central cardiovascular control.

2. In the present study, we searched for possible rostrocaudal somatotopy in the neural connections from the three subdivisions of the LH (anterior—LHa; tuberal—LHt and posterior—LHp) to the different rostrocaudal portions of the dPAG.

3. The bidirectional neuronal tracer biotinylated-dextran-amine (BDA) was microinjected into different rostrocaudal coordinates of the dPAG (AP 3.4–2.7 mm) of male Wistar rats. One week later, animals were sacrificed and brain slices were processed and analyzed to detect neuronal efferent projections from the LH to the dPAG.

4. Neuronal cell body staining was observed along all the rostrocaudal axis of the LH when BDA was microinjected in more rostral dPAG coordinates. When the BDA was microinjected into more caudal dPAG regions, labeled neurons were observed only in the caudal portion of the LH.

5. Efferent projections from the LHa were directed only to the rostral portion of the dPAG. Projections from the rostral and medial portions of the LHt were also directed to the rostral dPAG, whereas both rostral and caudal dPAG received projections from the caudal portion of the LHt. Efferent projections from the anterior portion of the LHp were directed to both rostral and caudal dPAG, whereas projections from the caudal LHp were only directed to the rostral portion of the dPAG.

6. The results suggest a somatotopic correlation in LH projections to the dPAG with main connections to the rostral dPAG, which are efferent from the three divisions of the LH. More caudal regions of the dPAG received afferents only from posterior sites in the LH.

7. Moreover, the results point out to extensive and complex neural somatotopic projections from all LH subdivisions to different rostrocaudal portions of the dPAG, reinforcing the idea of significant functional interactions between the brain structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  • Allen, G. V., and Cechetto, D. F. (1992). Functional and anatomical organization of cardiovascular pressor and depressor sites in the lateral hypothalamic area: I. Descending projections. J. Comp. Neurol. 315:313–332.

    Article  PubMed  CAS  Google Scholar 

  • Bandler, R., Carrive, P., and Depaulis, A. (1991). Introduction: emerging principles of organization of the midbrain periaqueductal gray matter. In Depaulis, A., and Bandler, R. (eds.), The Midbrain Periaqueductal Gray Matter: Functional, Anatomical, and Neurochemical Organization, Plenum Press, New York, pp. 1–8.

    Google Scholar 

  • Bandler, R., and Tork, I. (1987). Midbrain periaqueductal grey region in the cat has afferent and efferent connections with solitary tract nuclei. Neurosci. Lett. 74:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Beitz, A. J. (1995). Periaqueductal gray. In Paxinos, G. (ed.), The Rat Nervous System. Academic Press, Australia, pp. 173–182.

    Google Scholar 

  • Berk, M. L., and Finkelstein, J. A. (1983). Long descending projections of the hypothalamus in the pigeon, Columba livia. J. Comp. Neurol. 220:127–136.

    Article  PubMed  CAS  Google Scholar 

  • Holstege, G. (1987). Some anatomical observations on the projections from the hypothalamus to brainstem and spinal cord: An HRP and autoradiographic tracing study in the cat. J. Comp. Neurol. 260:98–126.

    Article  PubMed  CAS  Google Scholar 

  • Hosoya, Y., and Matsushita, M. (1981). Brainstem projections from the lateral hypothalamic area in the rat, as studied with autoradiography. Neurosci. Lett. 24:111–116.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Z. G., Subramanian, S. H., Balnave, R. J., Turman, A. B., and Moi Chow, C. (2000). Roles of periaqueductal gray and nucleus tractus solitarius in cardiorespiratory function in the rat brainstem. Respir. Physiol. 120:185–195.

    Article  PubMed  CAS  Google Scholar 

  • Iwata, J., LeDoux, J. E., and Reis, D. J. (1986). Destruction of intrinsic neurons in the lateral hypothalamus disrupts the classical conditioning of autonomic but not behavioral emotional responses in the rat. Brain Res. 368:161–166.

    Article  PubMed  CAS  Google Scholar 

  • Jenck, F., Broekkamp, C. L., and Van Delft, A. M. (1989). Opposite control mediated by central 5-HT1A and non-5-HT1A (5-HT1B or 5-HT1C) receptors on periaqueductal gray aversion. Eur. J. Pharmacol.. 161:219–221.

    Article  PubMed  CAS  Google Scholar 

  • LeDoux, J. E., Iwata, J., Cicchetti, P., and Reis, D. J. (1988). Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 8:2517–2529.

    PubMed  CAS  Google Scholar 

  • Liebman, J. M., Mayer, D. J., and Liebeskind, J. C. (1970). Mesencephalic central gray lesions and fear-motivated behavior in rats. Brain Res. 23:353–370.

    Article  PubMed  CAS  Google Scholar 

  • Lyon, M. (1964). The role of central midbrain structures in conditioned responding to aversive noise in the rat. J. Comp. Neurol. 122:407–429.

    Article  PubMed  CAS  Google Scholar 

  • Mantyh, P. W. (1982). Forebrain projections to the periaqueductal gray in the monkey, with observations in the cat and rat. J. Comp. Neurol. 206:146–158.

    Article  PubMed  CAS  Google Scholar 

  • Nashold, B. S., Jr., Wilson, W. P., and Slaughter, D. G. (1969). Sensations evoked by stimulation in the midbrain of man. J. Neurosurg. 30:14–24.

    Google Scholar 

  • Pajolla, G. P., and de Aguiar Correa, F. M. (2004). Cardiovascular responses to the injection of L-glutamate in the lateral hypothalamus of unanesthetized or anesthetized rats. Auton. Neurosci 116:19–29.

    Article  PubMed  CAS  Google Scholar 

  • Pajolla, G. P., Tavares, R. F., Pelosi, G. G., and Correa, F. M. (2005). Involvement of the periaqueductal gray in the hypotensive response evoked by l-glutamate microinjection in the lateral hypothalamus of unanesthetized rats. Auton. Neurosci. 122:84–93.

    Article  PubMed  CAS  Google Scholar 

  • Paredes, J., Winters, R. W., Schneiderman, N., and McCabe, P. M. (2000). Afferents to the central nucleus of the amygdala and functional subdivisions of the periaqueductal gray: Neuroanatomical substrates for affective behavior. Brain Res. 887:157–173.

    Article  PubMed  CAS  Google Scholar 

  • Paxinos, G., and Watson, C., (1997). The Rat Brain in Steretaxic Coordinates, Academic Press, Sydney.

    Google Scholar 

  • Pelosi, G. G., and Corrêa, F. M. A. (2005). Cardiovascular effects of noradrenaline microinjected into the dorsal periaqueductal gray area of unanaesthetized rats. Eur. J. Neurosci. 22:3188–3194.

    Article  PubMed  Google Scholar 

  • Saper, C. B., Swanson, L. W., and Cowan, W. M. (1979). An autoradiographic study of the efferent connections of the lateral hypothalamic area in the rat. J. Comp. Neurol. 183:689–706.

    Article  PubMed  CAS  Google Scholar 

  • Semenenko, F. M., and Lumb, B. M. (1992). Projections of anterior hypothalamic neurones to the dorsal and ventral periaqueductal grey in the rat. Brain Res. 582:237–245.

    Article  PubMed  CAS  Google Scholar 

  • ter Horst, G. J., Luiten, P. G., and Kuipers, F. (1984). Descending pathways from hypothalamus to dorsal motor vagus and ambiguus nuclei in the rat. J. Auton. Nerv. Syst. 11:59–75.

    Article  PubMed  CAS  Google Scholar 

  • van der Plas, J., Wiersinga-Post, J. E., Maes, F. W., and Bohus, B. (1995). Cardiovascular effects and changes in midbrain periaqueductal gray neuronal activity induced by electrical stimulation of the hypothalamus in the rat. Brain Res. Bull. 37:645–656.

    Article  PubMed  CAS  Google Scholar 

  • Vercelli, A., Repici, M., Garbossa, D., and Grimaldi, A. (2000). Recent techniques for tracing pathways in the central nervous system of developing and adult mammals. Brain Res. Bull. 51:11–28.

    Article  PubMed  CAS  Google Scholar 

  • Yardley, C. P., and Hilton, S. M. (1986). The hypothalamic and brainstem areas from which the cardiovascular and behavioural components of the defence reaction are elicited in the rat. J. Auton. Nerv. Syst. 15:227–244.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Ms Ivanilda A.C. Fortunato, Simone S. Guilhaume and Idalia I.B. Aguiar for technical support. Gislaine G. Pelosi is a Ph.D. student (Fapesp-02/14147-9) enrolled in the Graduation Program on Pharmacology of the School of Medicine of Ribeirão Preto and Rodrigo F. Tavares is a post-doc fellow (Fapesp 04/01270-2). This study was supported by grant from CAPES and CNPq (306381/2003-6 and 505394/2003-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando M. A. Corrêa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelosi, G.G., Tavares, R.F. & Corrêa, F.M.A. Rostrocaudal Somatotopy in the Neural Connections Between the Lateral Hypothalamus and the Dorsal Periaqueductal Gray of the Rat Brain. Cell Mol Neurobiol 26, 633–641 (2006). https://doi.org/10.1007/s10571-006-9015-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9015-2

KEY WORDS:

Navigation