Skip to main content
Log in

K-Aggravated Myotonia Mutations at Residue G1306 Differentially Alter Deactivation Gating of Human Skeletal Muscle Sodium Channels

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

Fast inactivation and deactivation gating were compared between wild-type human voltage-gated skeletal muscle sodium channel (hNaV1.4) and potassium-aggravated myotonia (PAM) mutations G1306A, G1306E, and G1306V. Cell-attached macropatches were used to compare wild-type and PAM-gating properties in normal extracellular K+ (4 mM), decreased K+ (1 mM), and increased K+ (10 mM). G1306E/A increased the apparent valence of the conductance (g(V)) curve. Compared to hNaV1.4, the steady-state inactivation (h ) curve was depolarized for G1306E/A but hyperpolarized by G1306V, and this mutation increased apparent valence. G1306A/E slowed the rate of current rise towards peak activation. G1306V slowed open-state deactivation, inactivated-state deactivation, and recovery from fast inactivation. G1306A/E abbreviated open-state deactivation at negative commands. These mutants slowed open-state deactivation at more positive commands, at voltages for which fast inactivation might influence tail current decay. G1306E abbreviated recovery delay without affecting recovery rate. Low K+ increased peak current in hNaV1.4 and in G1306V. For G1306E, low K+ increased the rate of entry into fast inactivation, hyperpolarized the g(V) and h curves, and increased recovery delay. Biophysical underpinnings of PAM caused by mutations of G1306 thus vary with the specific mutation, and hyperkalemic exacerbation of effects of mutations at this residue are not direct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bouhours, M., Sternberg, D., Davoine, C.-S., Xavier, F., Willer, J. C., Fontaine, B., and Tabti, T. (2004). Functional characterization and cold-sensitivity of T1313A, a new mutation of the skeletal muscle sodium channel causing paramyotonia congenita in humans. J. Physiol. 554(3):635–647.

    CAS  PubMed  Google Scholar 

  • Cannon, S. C. (1997). From mutation to myotonia in sodium channel disorders. Neuromuscul. Disord. 7:241–249.

    CAS  PubMed  Google Scholar 

  • Cannon, S. C. (2000). Spectrum of sodium channel disturbances in the nondystrophic myotonias and periodic paralyses. Kidney Int. 57:772–779.

    Article  CAS  PubMed  Google Scholar 

  • Catterall, W. A. (2000). From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron 26:13–25.

    Article  CAS  PubMed  Google Scholar 

  • Chahine, M., George, A. L. Jr., Zhou, M., Ji, S., Sun, W., Barchi, R. L., and Horn, R. (1994). Sodium channel mutations in paramyotonia congenita uncouple inactivation from activation. Neuron 12:281–294.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L.-Q., Santarelli, V., Horn, R., and Kallen, R. G. (1996). A unique role for the S4 segment of domain 4 in the inactivation of sodium channels. J. Gen. Physiol. 108:549–556.

    CAS  PubMed  Google Scholar 

  • Dice, M. S., Abbruzzese, J. L., Wheeler, J. T., Groome, J. R., Fujimoto, E., and Ruben, P. C. (2004). Temperature-sensitive defects in paramyotonia congenital mutants R1448C and T1313M. Muscle Nerve 30:277–288.

    Article  PubMed  Google Scholar 

  • Featherstone, D. E., Fujimoto, E., and Ruben, P. C. (1998). A defect in skeletal muscle sodium channel deactivation exacerbates hyperexcitability in human paramyotonia congenita. J. Physiol. 506(3):627–638.

    Article  CAS  PubMed  Google Scholar 

  • George, A. L. Jr., Komisarof, J., Kallen, R. G., and Barchi, R. L. (1992). Primary structure of the adult human skeletal muscle voltage-dependent sodium channel. Ann. Neurol. 31(2):131–137.

    Article  CAS  PubMed  Google Scholar 

  • George, A. L. Jr. (1995). Molecular genetics of ion channel diseases. Kidney Int. 48:1180–1190.

    CAS  PubMed  Google Scholar 

  • Green, D. S., George, A. L. Jr., and Cannon, S. C. (1998). Human sodium channel gating defects caused by missense mutations in S6 segments associated with myotonia: S804F and V1293I. J. Physiol. 510(3):685–694.

    Article  CAS  PubMed  Google Scholar 

  • Groome, J. R., Fujimoto, E., and Ruben, P. C. (2000). The delay in recovery from fast inactivation in skeletal muscle sodium channels is deactivation. Cell. Mol. Neurobiol. 20(4):521–527.

    Article  CAS  PubMed  Google Scholar 

  • Groome, J. R., Fujimoto, E., Walter, L., and Ruben, P. C. (2002). Outer and central charged residues in DIVS4 of skeletal muscle sodium channels have differing roles in deactivation. Biophys. J. 82:1293–1307.

    CAS  PubMed  Google Scholar 

  • Groome, J. R., Fujimoto, E., and Ruben, P. C. (2003). Negative charges in the DIII-DIV linker of skeletal muscle Na+ channels regulate deactivation gating. J. Physiol. 548(1):85–96.

    Article  CAS  PubMed  Google Scholar 

  • Hayward, L. J., Brown, R. H. Jr., and Cannon, S. C. (1996). Inactivation defects caused by myotonia-associated mutations in the sodium channel III–IV linker. J. Gen. Physiol. 107:559–576.

    Article  CAS  PubMed  Google Scholar 

  • Heine, R., Pika, U., and Lehmann-Horn, F. (1993). A novel SCN4A mutation causing myotonia aggravated by cold and potassium. Hum. Mol. Genet. 2(9):1349–1353.

    CAS  PubMed  Google Scholar 

  • Ho, H. N., Hunt, H. D., Morton, R. M., Pullen, J. K., and Pease, L. R. (1989). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman, E. P., Lehmann-Horn, F., and Rudel, R. (1995). Overexcited or inactive: Ion channels in muscle disease. Cell 80:681–686.

    Article  CAS  PubMed  Google Scholar 

  • Horn, R., Ding, S., and Gruber, H. J. (2000). Immobilizing the moving parts of voltage-gated ion channels. J. Gen. Physiol. 116:461–475.

    Article  CAS  PubMed  Google Scholar 

  • Isom, L. L., DeJongh, K. S., and Catterall, W. A. (1994). Auxiliary subunits of voltage-gated ion channels. Neuron 12:1183–1194.

    Article  CAS  PubMed  Google Scholar 

  • Kuo, C.-C., and Bean, B. P. (1994). Na+ channels must deactivate to recover from inactivation. Neuron 12:819–829.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann-Horn, F., and Jurkat-Rott, K. (1999). Voltage-gated ion channels and hereditary disease. Physiol. Rev. 79:1317–1372.

    CAS  PubMed  Google Scholar 

  • Lerche, H., Heine, R., Pika, U., George, A. L. Jr., Mitrovic, N., Browatzki, M., Weib, T., Rivet-Bastide, M., Francke, C., Lomonaco, M., Ricker, K., and Lehmann-Horn, F. (1993). Human sodium channel myotonia: Slowed channel inactivation due to substitutions for a glycine within the III–IV linker. J. Physiol. 470:13–22.

    CAS  PubMed  Google Scholar 

  • Lerche, H., Mitrovic, N., and Lehmann-Horn, F. (1997). Ion channel diseases in neurology. Fortschr. Neurol. Psychiatr. 65(11):481–488.

    Article  CAS  PubMed  Google Scholar 

  • McClatchey, A. I., McKenna-Vassek, D., Cros, D., Worthen, H. G., Kuncl, R. W., DeSilva, S. M., Cornblath, D. R., Gusella, J. F., and Brown, R. H. Jr. (1992). Novel mutations in families with unusual and variable disorders of the skeletal muscle sodium channel. Nat. Genet. 2:148–152.

    Article  CAS  PubMed  Google Scholar 

  • Mitrovic, N., George, A. L. Jr., Heine, R., Wagner, S., Pika, U., Hartlaub, U., Zhou, M., Lerche, H., Fahlke, C., and Lehmann-Horn, F. (1994). K+-aggravated myotonia: Destabilization of the inactivated state of the human muscle Na+ channel by the V1589M mutation. J. Physiol. 478(3):395–402.

    CAS  PubMed  Google Scholar 

  • Mitrovic, N., George, A. L. Jr., Lerche, H., Wagner, S., Fahlke, C., and Lehmann-Horn, F. (1995). Different effects on gating of three myotonia-causing mutations in the inactivation gate of the human muscle sodium channel. J. Physiol. 487(1):107–114.

    CAS  PubMed  Google Scholar 

  • Moran, O., Nizzari, M., and Conti, F. (1999). Myopathic mutations affect differently the inactivation of the two gating modes of sodium channels. J. Bioenerg. Biomembr. 31(6):591–608.

    Article  CAS  PubMed  Google Scholar 

  • Noda, M. S., Shizimu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S. (1989). Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121–127.

    Google Scholar 

  • Orrel, R. W., Jurkatt-Rott, K., Lehmann-Horn, F., and Lane, R. J. M. (1998). Familial cramp due to potassium-aggravated myotonia. J. Neurol. Neurosurg. Psychiatry 65:569–572.

    Article  Google Scholar 

  • Peter, W., Mitrovic, N., Schiebe, M., Lehmann-Horn, F., and Lerche, H. (1999). A human muscle Na+ channel mutation in the voltage sensor IV/S4 affects channel block by the pentapeptide KIFMK. J. Physiol. 518(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  • Ptacek, L. J., Gouw, L., Kwiecinski, H., McManis, P., Mendell, J. R., Barohn, R. J., George, A. L. Jr., Barchi, R. L., Robertson, M., and Leppert, M. F. (1993). Sodium channel mutations in paramyotonia congenita and hyperkalemic periodic paralysis. Ann. Neurol. 33:300–307.

    Article  CAS  PubMed  Google Scholar 

  • Ptacek, L. J., Tawil, R., Griggs, R. C., Meola, G., McManis, P., Barohn, R. J., Mendell, J. R., Harris, C., Spitzer, R., and Santiago, F., (1994). Sodium channel mutations in acetazolamide-responsive myotonia congenital, paramyotonia congenital, and hyperkalemic periodic paralysis, Neurology 44(8): 1500–1503.

    CAS  PubMed  Google Scholar 

  • Richmond, J. E., VanDeCarr, D., Featherstone, D. E., George, A. L. Jr., and Ruben, P. C. (1997). Defective fast inactivation and deactivation account for sodium channel myotonia in the I1160V mutant. Biophys. J. 73:1896–1903.

    CAS  PubMed  Google Scholar 

  • Rosenfeld, F., Sloan-Brown, K., and George, A. L. Jr. (1997). A novel muscle sodium channel mutation causes painful congenital myotonia. Ann. Neurol. 42:811–814.

    Article  CAS  PubMed  Google Scholar 

  • Rudel, R., Ruppersberg, J. P., and Spittelmeister, W. (1989). Abnormalities of the fast sodium current in myotonic dystrophy, recessive generalized myotonia and adynamia episodica. Muscle Nerve 12:281–287.

    CAS  PubMed  Google Scholar 

  • Stühmer, W., Conti, F., Suzuki, H., Wang, X., Noda, M., Yahagi, N., Kubo, H., and Numa, S. (1989). Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–604.

    PubMed  Google Scholar 

  • Vassilev, P. M., Scheuer, T., and Catterall, W. A. (1988). Identification of an intracellular peptide segment involved in sodium channel inactivation. Science 241:1658–1661.

    CAS  PubMed  Google Scholar 

  • West, J. W., Patton, D. E., Scheurer, T., Wang, T., Goldin, A. L., and Catterall, W. A. (1992). A cluster of hydrophobic residues required for fast Na+ channel inactivation. Proc. Natl. Acad. Sci. U.S.A. 89:10910–10914.

    CAS  PubMed  Google Scholar 

  • Yang, N., and Horn, R. (1995). Evidence for voltage-dependent movement in sodium channels. Neuron 15:213–216.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. Ruben.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groome, J.R., Fujimoto, E. & Ruben, P.C. K-Aggravated Myotonia Mutations at Residue G1306 Differentially Alter Deactivation Gating of Human Skeletal Muscle Sodium Channels. Cell Mol Neurobiol 25, 1075–1092 (2005). https://doi.org/10.1007/s10571-005-8057-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-005-8057-1

Key Words

Navigation