Skip to main content

The Serotonin 1A A Receptor: A Representative Member of the Serotonin Receptor Family

Abstract

1. Serotonin is an intrinsically fluorescent biogenic amine that acts as a neurotransmitter and is found in a wide variety of sites in the central and peripheral nervous system. Serotonergic signaling appears to play a key role in the generation and modulation of various cognitive and behavioral functions.

2. Serotonin exerts its diverse actions by binding to distinct cell surface receptors which have been classified into many groups. The serotonin1A (5-HT1A) receptor is the most extensively studied of the serotonin receptors and belongs to the large family of seven transmembrane domain G-protein coupled receptors.

3. The tissue and sub-cellular distribution, structural characteristics, signaling of the serotonin1A receptor and its interaction with G-proteins are discussed.

4. The pharmacology of serotonin1A receptors is reviewed in terms of binding of agonists and antagonists and sensitivity of their binding to guanine nucleotides.

5. Membrane biology of 5-HT1A receptors is presented using the bovine hippocampal serotonin1A receptor as a model system. The ligand binding activity and G-protein coupling of the receptor is modulated by membrane cholesterol thereby indicating the requirement of cholesterol in maintaining the receptor organization and function. This, along with the reported detergent resistance characteristics of the receptor, raises important questions on the role of membrane lipids and domains in the function of this receptor.

This is a preview of subscription content, access via your institution.

References

  • Albert, P. R., Morris, S. J., Ghahremani, M. H., Storring, J. M., and Lembo, P. M. (1998). A putative α-helical Gβγ-coupling domain in the second intracellular loop of the 5-HT1A receptor. Ann. N.Y. Acad. Sci. 861:146–161.

    PubMed  Google Scholar 

  • Albert, P. R., Zhou, Q. -Y., Van Tol, H. H. M., Bunzow, J. R., and Civelli, O. (1990). Cloning, functional expression, and mRNA tissue distribution of the rat 5-hydroxytryptamine1A receptor gene. J. Biol. Chem. 265:5825–5832.

    PubMed  Google Scholar 

  • Artigas, F., Romero, L., de Montigny, C., and Blier, P. (1996). Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci. 19:378–383.

    Article  PubMed  Google Scholar 

  • Arvidsson, L. E., Hacksell, U., Nilsson, J. L., Hjorth, S., Carlsson, A., Lindberg, P., Sanchez, D., and Wikstrom, H. (1981). 8-Hydroxy-2-(di-n-propylamino)tetralin, a new centrally acting 5-hydroxytryptamine receptor agonist. J. Med. Chem. 24:921–923.

    Article  PubMed  Google Scholar 

  • Azmitia, E. C. (2001). Neuronal instability: Implications for Rett’s syndrome. Brain Dev. 23(Suppl. 1):S1–S10.

    Article  Google Scholar 

  • Azmitia, E. C., Gannon, P. J., Kheck, N. M., and Whitaker-Azmitia, P. M. (1996). Cellular localization of the 5-HT1A receptor in primate brain neurons and glial cells. Neuropsychopharmacology 14:35–46.

    Article  PubMed  Google Scholar 

  • Banerjee, P. (1999). Detergents. In Creighton, T. E. (ed.), Encyclopedia of Molecular Biology, Wiley, New York, pp. 661–666.

    Google Scholar 

  • Banerjee, P., Berry-Kravis, E., Bonafede-Chhabra, D., and Dawson, G. (1993). Heterologous expression of the serotonin 5-HT1A receptor in neural and non-neural cell lines. Biochem. Biophys. Res. Commun. 192:104–110.

    Article  PubMed  Google Scholar 

  • Banerjee, P., Joo, J. B., Buse, J. T., and Dawson, G. (1995). Differential solubilization of lipids along with membrane proteins by different classes of detergents. Chem. Phys. Lipids 77:65–78.

    Article  PubMed  Google Scholar 

  • Barnes, N. M., and Sharp, T. (1999). A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152.

    Article  PubMed  Google Scholar 

  • Barnes, P. J., Chung, K. F., and Page, C. P. (1998). Inflammatory mediators of asthma: An update. Pharmacol. Rev. 50:515–596.

    PubMed  Google Scholar 

  • Barr, A. J., and Manning, D. R. (1997). Agonist-independent activation of Gz by the 5-hydroxytryptamine1A receptor co-expressed in Spodoptera frugiperda cells. Distinguishing inverse agonists from neutral antagonists. J. Biol. Chem. 272:32979–32987.

    Article  PubMed  Google Scholar 

  • Barr, A. J., Brass, L. F., and Manning, D. R. (1997). Reconstitution of receptors and GTP-binding regulatory proteins (G proteins) in Sf9 cells. A direct evaluation of selectivity in receptor. G protein coupling. J. Biol. Chem. 272:2223–2229.

    Article  PubMed  Google Scholar 

  • Bayewitch, M. L., Nevo, I., Avidor-Reiss, T., Levy, R., Simonds, W. F., and Vogel, Z. (2000). Alterations in detergent solubility of heterotrimeric G proteins after chronic activation of G(i/o)-coupled receptors: changes in detergent solubility are in correlation with onset of adenylyl cyclase superactivation. Mol. Pharmacol. 57:820–825.

    PubMed  Google Scholar 

  • Bertin, B., Freissmuth, M., Breyer, R. M., Schutz, W., Strosberg, A. D., and Marullo, S. (1992). Functional expression of the human serotonin 5-HT1A receptor in Escherichia coli. Ligand binding properties and interaction with recombinant G protein alpha-subunits. J. Biol. Chem. 267:8200–8206.

    PubMed  Google Scholar 

  • Bikker, J. A., Trumpp-Kallmeyer, S., and Humblet, C. (1998). G-protein coupled receptors: Models, mutagenesis, and drug design. J. Med. Chem. 41:2911–2927.

    Article  PubMed  Google Scholar 

  • Blier, P., de Montigny, C., and Chaput, Y. (1990). A role for the serotonin system in the mechanism of action of antidepressant treatments: preclinical evidence. J. Clin. Psychiatry 51:14–20.

    Google Scholar 

  • Blier, P., Lista, A., and de Montigny, C. (1993). Differential properties of pre- and postsynaptic 5-hydroxytryptamine1A receptors in the dorsal raphe and hippocampus: I. Effect of spiperone. J. Pharmacol. Exp. Ther. 265:7–15.

    PubMed  Google Scholar 

  • Bockaert, J., Dumuis, A., Bouhelal, R., Sebben, M., and Cory, R. N. (1987). Piperazine derivatives including the putative anxiolytic drugs, buspirone and ipsapirone, are agonists at 5-HT1A receptors negatively coupled with adenylate cyclase in hippocampal neurons. Naunyn Schmiedebergs Arch. Pharmacol. 335:588–592.

    Article  PubMed  Google Scholar 

  • Bourne, H. R. (1997). How receptors talk to trimeric G proteins. Curr. Opin. Cell Biol. 9:134–142.

    Article  PubMed  Google Scholar 

  • Bowman, R. L., Caulfield, P. A., and Udenfriend, S. (1955). Spectrophotofluorometric assay in the visible and ultraviolet. Science 122:32–33.

    PubMed  Google Scholar 

  • Brown, D. A., and Rose, J. K. (1992). Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544.

    Article  PubMed  Google Scholar 

  • Burger, K., Gimpl, G., and Fahrenholz, F. (2000). Regulation of receptor function by cholesterol. Cell. Mol. Life Sci. 57:1577–1592.

    PubMed  Google Scholar 

  • Burnet, P. W., Eastwood, S. L., Lacey, K., and Harrison, P. J. (1995). The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain. Brain Res. 676:157–168.

    Article  PubMed  Google Scholar 

  • Butkerait, P., Zheng, Y., Hallak, H., Graham, T. E., Miller, H. A., Burris, K. D., Molinoff, P. B., and Manning, D. R. (1995). Expression of the human 5-hydroxytryptamine1A receptor in Sf9 cells. Reconstitution of a coupled phenotype by co-expression of mammalian G protein subunits. J. Biol. Chem. 270:18691–18699.

    Article  PubMed  Google Scholar 

  • Chalmers, D. T., and Watson, S. J. (1991). Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain—a combined in situ hybridization/in vitro receptor autoradiographic study. Brain Res. 561:51–60.

    Article  PubMed  Google Scholar 

  • Chanda, P. K., Minchin, M. C., Davis, A. R., Greenberg, L., Reilly, Y., McGregor, W. H., Bhat, R., Lubeck, M. D., Mizutani, S., and Hung, P. P. (1993). Identification of residues important for ligand binding to the human 5-hydroxytryptamine1A serotonin receptor. Mol. Pharmacol. 43:516–520.

    PubMed  Google Scholar 

  • Charest, A., Wainer, B. H., and Albert, P. R. (1993). Cloning and differentiation-induced expression of a murine serotonin1A receptor in a septal cell line. J. Neurosci. 13:5164–5171.

    PubMed  Google Scholar 

  • Chattopadhyay, A., and Harikumar, K. G. (1996). Dependence of critical micelle concentration of a zwitterionic detergent on ionic strength: implications in receptor solubilization. FEBS Lett. 391:199–202.

    Article  PubMed  Google Scholar 

  • Chattopadhyay, A., Harikumar, K. G., and Kalipatnapu, S. (2002). Solubilization of high affinity G-protein coupled serotonin1A receptors from bovine hippocampus using pre-micellar CHAPS at low concentration. Mol. Membr. Biol. 19:211–220.

    Article  PubMed  Google Scholar 

  • Chattopadhyay, A., Jafurulla, Md., and Kalipatnapu, S. (2004). Solubilization of serotonin1A receptors heterologously expressed in chinese hamster ovary cells. Cell. Mol. Neurobiol. 24:293–300.

    Article  PubMed  Google Scholar 

  • Chattopadhyay, A., Rukmini, R., and Mukherjee, S. (1996). Photophysics of a neurotransmitter: Ionization and spectroscopic properties of serotonin. Biophys. J. 71:1952–1960.

    PubMed  Google Scholar 

  • Chen, R. F. (1968). Fluorescence of protonated excited-state forms of 5-hydroxytryptamine (serotonin) and related indoles. Proc. Natl. Acad. Sci. U.S.A. 60:598–605.

    PubMed  Google Scholar 

  • Christopoulos, A., and Kenakin, T. (2002). G Protein-coupled receptor allosterism and complexing. Pharmacol. Rev. 54:323–374.

    Article  PubMed  Google Scholar 

  • Clapham, D. E. (1996). The G-protein nanomachine. Nature 379:297–299.

    Article  PubMed  Google Scholar 

  • Clarke, W. P., De Vivo, M., Beck, S. G., Maayani, S., and Goldfarb, J. (1987). Serotonin decreases population spike amplitude in hippocampal cells through a pertussis toxin substrate. Brain Res. 410:357–361.

    Article  PubMed  Google Scholar 

  • Cliffe, I. A., Brightwell, C. I., Fletcher, A., Forster, E. A., Mansell, H. L., Reilly, Y., Routledge, C., and White, A. C. (1993). (S)-N-tert-butyl-3-(4-(2-methoxyphenyl)-piperazin-1-yl)-2-phenylpropanamide [(S)-WAY-100135]: a selective antagonist at presynaptic and postsynaptic 5-HT1A receptors. J. Med. Chem. 36:1509–1510.

    Article  PubMed  Google Scholar 

  • Crabbe, J. C., Phillips, T. J., Feller, D. J., Hen, R., Wenger, C. D., Lessov, C. N., and Schafer, G. L. (1996). Elevated alcohol consumption in null mutant mice lacking 5-HT1B serotonin receptors. Nat. Genet. 14:98–101.

    Article  PubMed  Google Scholar 

  • De Lean, A., Stadel, J. M., and Lefkowitz, R. J. (1980). A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J. Biol. Chem. 255:7108–7117.

    PubMed  Google Scholar 

  • De Vivo, M., and Maayani, S. (1986). Characterization of the 5-hydroxytryptamine1A receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes. J. Pharmacol. Exp. Ther. 238:248–253.

    PubMed  Google Scholar 

  • del Olmo, E., López-Giménez, J. F., Vilaró, M. T., Mengod, G., Palacios, J. M., and Pazos, A. (1998). Early localization of mRNA coding for 5-HT1A receptors in human brain during development. Mol. Brain Res. 60:123–126.

    Article  PubMed  Google Scholar 

  • DeVinney, R., and Wang, H. H. (1995). Mg2+ enhances high affinity [3H]8-hydroxy-2-(Di-N-propylamino) tetralin binding and guanine necleotide modulation of serotonin-1a receptors. J. Recept. Signal Transduct. Res. 15:757–771.

    PubMed  Google Scholar 

  • Dietschy, J. M., and Turley, S. D. (2001). Cholesterol metabolism in the brain. Curr. Opin. Lipidol. 12:105–112.

    Article  PubMed  Google Scholar 

  • Dohlman, H. G., Caron, M. G., DeBlasi, A., Frielle, T., and Lefkowitz, R. J. (1990). A role of extracellular disulfide bonded cysteines in the ligand binding function of the β2 adrenergic receptor. Biochemistry 29:2335–2342.

    Article  PubMed  Google Scholar 

  • Dotti, C. G., and Simons, K. (1990). Polarized sorting of viral glycoproteins to the axon and dendrites of hippocampal neurons in culture. Cell 62:63–72.

    Article  PubMed  Google Scholar 

  • Dourish, C. T., Ahlenius, S., and Hutson, P. H. (1987). Brain 5-HT1A Receptors, Ellis Horwood, Chichester, U.K.

    Google Scholar 

  • Dumuis, A., Sebben, M., and Bockaert, J. (1988). Pharmacology of 5-hydroxytryptamine-1A receptors which inhibit cAMP production in hippocampal and cortical neurons in primary culture. Mol. Pharmacol. 33:178–186.

    PubMed  Google Scholar 

  • Edidin, M. (2003). The state of lipid rafts: From model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32:257–283.

    Article  PubMed  Google Scholar 

  • Eftink, M. R. (1991). Fluorescence techniques for studying protein structure. In Suelter, C. H., (ed.), Methods of Biochemical Analysis, vol. 35, Wiley, New York, pp. 127–205.

    Google Scholar 

  • El Mestikawy, S., Riad, M., Laporte, A. M., Verge, D., Daval, G., Gozlan, H., and Hamon, M. (1990). Production of specific anti-rat 5-HT1A receptor antibodies in rabbits injected with a synthetic peptide. Neurosci. Lett. 118:189–192.

    Article  PubMed  Google Scholar 

  • Emerit, M. B., Miquel, M. C., Gozlan, H., and Hamon, M. (1991). The GTP-insensitive component of high affinity [3H]-8-hydroxy-2(di-n-propylamino)tetralin binding in the rat hippocampus corresponds to an oxidized state of the 5-HT1A receptor. J. Neurochem. 56:1705–1716.

    PubMed  Google Scholar 

  • Epand, R. M., Maekawa, S., Yip, C. M., and Epand, R. F. (2001). Protein-induced formation of cholesterol-rich domains. Biochemistry 40:10514–10521.

    Article  PubMed  Google Scholar 

  • Erspamer, V., and Asero, B. (1952). Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature 169:800–801.

    Google Scholar 

  • Fajardo, O., Galeno, J., Urbina, M., Carreira, I., and Lima, L. (2003). Serotonin, serotonin 5-HT1A receptors and dopamine in blood peripheral lymphocytes of major depression patients. Int. Immunopharmacol. 3:1345–1352.

    Article  PubMed  Google Scholar 

  • Fargin, A., Raymond, J. R., Lohse, M. J., Kobilka, B. K., Caron, M. G., and Lefkowitz, R. J. (1988). The genomic clone G-21 which resembles a β-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature 335:358–360.

    Article  PubMed  Google Scholar 

  • Fargin, A., Yamamoto, K., Cotecchia, S., Goldsmith, P. K., Spiegel, A. M., Lapetina, E. G., Caron, M. G., and Lefkowitz, R. J. (1991). Dual coupling of the cloned 5-HT1A receptor to both adenylyl cyclase and phospholipase C is mediated via the same Gi protein. Cell. Signal. 3:547–557.

    Article  PubMed  Google Scholar 

  • Fraser, C. M. (1989). Site-directed mutagenesis of β-adrenergic receptors. Identification of conserved cysteine residues that independently affect ligand binding and receptor activation. J. Biol. Chem. 264:9266–9270.

    PubMed  Google Scholar 

  • Freire-Garabal, M., Nuñez, M. J., Balboa, J., López-Delgado, P., Gallego, R., García-Caballero, T., Fernández-Roel, M. D., Brenlla, J., and Rey-Méndez, M. (2003). Serotonin upregulates the activity of phagocytosis through 5-HT1A receptors. Br. J. Pharmacol. 139:457–463.

    Article  PubMed  Google Scholar 

  • Fujiwara, Y., Nelson, D. L., Kashihara, K., Varga, E., Roeske, W. R., and Yamamura, H. I. (1990). The cloning and sequence analysis of the rat serotonin-1A receptor gene. Life Sci. 47:PL127–132.

    Article  PubMed  Google Scholar 

  • Garavito, R. M., and Ferguson-Miller, S. (2001). Detergents as tools in membrane biochemistry. J. Biol. Chem. 276:32403–32406.

    Article  PubMed  Google Scholar 

  • Garnovskaya, M. N., Gettys, T. W., van Biesen, T., Prpic, V., Chuprun, J. K., and Raymond, J. R. (1997). 5-HT1A receptor activates Na+/H+ exchange in CHO-K1 cells through Giα2 and Giα3. J. Biol. Chem. 272:7770–7776.

    Article  PubMed  Google Scholar 

  • Gaspar, P., Cases, O., and Maroteaux, L. (2003). The developmental role of serotonin: News from mouse molecular genetics. Nat. Rev. Neurosci. 4:1002–1012.

    Article  PubMed  Google Scholar 

  • Gether, U. (2000). Uncovering molecular mechanisms involved in activation of G-protein coupled receptors. Endocr. Rev. 21:90–113.

    Article  PubMed  Google Scholar 

  • Gettys, T. W., Fields, T. A., and Raymond, J. R. (1994). Selective activation of inhibitory G-protein alpha-subunits by partial agonists of the human 5-HT1A receptor. Biochemistry 33:4283–4290.

    Article  PubMed  Google Scholar 

  • Ghavami, A., Stark, K. L., Jareb, M., Ramboz, S., Segu, L., and Hen, R. (1999). Differential addressing of 5-HT1A and 5-HT1B receptors in epithelial cells and neurons. J. Cell Sci. 112:967–976.

    PubMed  Google Scholar 

  • Gingrich, J. A., and Hen, R. (2001). Dissecting the role of the serotonin system in neuropsychiatric disorders using knockout mice. Psychopharmacology 155:1–10.

    Article  PubMed  Google Scholar 

  • Gozlan, H., El Mestikawy, S., Pichat, L., Glowinski, J., and Hamon, M. (1983). Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature 305:140–142.

    Article  PubMed  Google Scholar 

  • Graeff, F. G., Guimaraes, F. S., de Andrade, T. G. C. S., and Deakin, J. F. W. (1996). Role of 5-HT in stress, anxiety, and depression. Neuropharmacology 54:129–141.

    Google Scholar 

  • Griebel, G. (1995). 5-Hydroxytryptamine-interacting drugs in animal models of anxiety disorders: More that 30 years of research. Pharmacol. Ther. 65:319–395.

    Article  PubMed  Google Scholar 

  • Griebel, G. (1999). 5-HT1A receptor blockers as potential drug candidates for the treatment of anxiety disorders. Drug News Perspect. 12:484–490.

    Article  Google Scholar 

  • Gross, C., Zhuang, X., Stark, K., Ramboz, S., Oosting, R., Kirby, L., Santarelli, L., Beck, S., and Hen, R. (2002). Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416:396–400.

    Article  PubMed  Google Scholar 

  • Guan, X. M., Peroutka, S. J., and Kobilka, B. K. (1992). Identification of a single amino acid residue responsible for the binding of a class of β-adrenergic receptor antagonists to the 5-hydroxytryptamine1A receptors. Mol. Pharmacol. 41:695–698.

    PubMed  Google Scholar 

  • Hall, M. D., El Mestikawy, S., Emerit, M. B., Pichat, L., Hamon, M., and Gozlan, H. (1985). [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding to pre and postsynatptic 5-hydroxytryptamine sites in various regions of the rat brain. J. Neurochem. 44:1685–1696.

    PubMed  Google Scholar 

  • Hall, R. A., Premont, R. T., and Lefkowitz, R. J. (1999). Heptahelical receptor signaling: beyond the G protein paradigm. J. Cell Biol. 145:927–932.

    Article  PubMed  Google Scholar 

  • Haltia, T., and Freire, E. (1995). Forces and factors that contribute to the structural stability of membrane proteins. Biochim. Biophys. Acta 1228:1–27.

    PubMed  Google Scholar 

  • Harikumar, K. G., and Chattopadhyay, A. (1998a). Metal ion and guanine nucleotide modulations of agonist interaction in G-protein-coupled serotonin1A receptors from bovine hippocampus. Cell. Mol. Neurobiol. 18:535–553.

    Article  Google Scholar 

  • Harikumar, K. G., and Chattopadhyay, A. (1998b). Modulation of agonist and antagonist interactions in serotonin1A receptors by alcohols. FEBS Lett. 438:96–100.

    Article  Google Scholar 

  • Harikumar, K. G., and Chattopadhyay, A. (1999). Differential discrimination of G-protein coupling of serotonin1A receptors from bovine hippocampus by an agonist and an antagonist. FEBS Lett. 457:389–392.

    Article  PubMed  Google Scholar 

  • Harikumar, K. G., and Chattopadhyay, A. (2000). Effect of alcohols on G-protein coupling of serotonin1A receptors from bovine hippocampus. Brain Res. Bull. 52:597–601.

    Article  PubMed  Google Scholar 

  • Harikumar, K. G., and Chattopadhyay, A. (2001). Modulation of antagonist binding to serotonin1A receptors from bovine hippocampus by metal ions. Cell. Mol. Neurobiol. 21:453–464.

    Article  PubMed  Google Scholar 

  • Harikumar, K. G., John, P. T., and Chattopadhyay, A. (2000). Role of disulfides and sulfhydryl groups in agonist and antagonist binding in serotonin1A receptors from bovine hippocampus. Cell. Mol. Neurobiol. 20:665–681.

    Article  PubMed  Google Scholar 

  • Heisler, L. K., Chu, H. -M., Brennan, T. J., Danao, J. A., Bajwa, P., Parsons, L. H., and Tecott, L. H. (1998). Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc. Natl. Acad. Sci. U.S.A. 95:15049–15054.

    Article  PubMed  Google Scholar 

  • Helmreich, E. J. M., and Hofmann, K.-P. (1996). Structure and function of proteins in G protein-coupled signal transfer. Biochim. Biophys. Acta 1286:285–322.

    PubMed  Google Scholar 

  • Hen, R. (1992). Of mice and flies: Commonalities among 5-HT receptors. Trends Pharmacol. Sci. 13:160–165.

    Article  PubMed  Google Scholar 

  • Ho, B. Y., Karschin, A., Branchek, T., Davidson, N., and Lester, H. A. (1992). Role of conserved aspartate and serine residues in ligand binding and in function of the 5-HT1A receptor: A site-directed mutation study. FEBS Lett. 312:259–262.

    Article  PubMed  Google Scholar 

  • Hollmann, M. W., Wieczorek, K. S., Berger, A., and Durieux, M. E. (2001). Local anesthetic inhibition of G protein-coupled receptor signaling by interference with Gαq protein function. Mol. Pharmacol. 59:294–301.

    PubMed  Google Scholar 

  • Holthuis, J., Pomorski, T., Raggers, R. J., Sprong, H., and van Meer, G. (2001). The organizing potential of sphingolipids in intracellular membrane transport. Physiol. Rev. 81:1689–1723.

    PubMed  Google Scholar 

  • Horn, F., van der Wenden, E. M., Oliveira, L., Ijzerman, A. P., and Vriend, G. (2000). Receptors coupling to G proteins: is there a signal behind the sequence? Proteins 41:448–459.

    Article  PubMed  Google Scholar 

  • Horstman, D. A., Brandon, S., Wilson, A. L., Guyer, C. A., Cragoe, E. J., and Limbird, L. E. (1990). An aspartate conserved among G-protein receptors confers allosteric regulation of α2-adrenergic receptors by sodium. J. Biol. Chem. 265:21590–21595.

    PubMed  Google Scholar 

  • Hoyer, D., Hannon, J. P., and Martin, G. R. (2002). Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav. 71:533–554.

    Article  PubMed  Google Scholar 

  • Hsiung, S. -C., Adlersberg, M., Arango, V., Mann, J. J., Tamir, H., and Liu, K. -P. (2003). Attenuated 5-HT1A receptor signaling in brains of suicide victims: Involvement of adenylyl cyclase, phosphatidylinositol 3-kinase, Akt and mitogen-activated protein kinase. J. Neurochem. 87:182–194.

    Article  PubMed  Google Scholar 

  • Ikonen, E., and Simons, K. (1998). Protein and lipid sorting from the trans-Golgi network to the plasma membrane in polarized cells. Semin. Cell Dev. Biol. 9:503–509.

    Article  PubMed  Google Scholar 

  • Innis, R. B., and Aghajanian, G. K. (1987). Pertussis toxin blocks 5-HT1A and GABAB receptor-mediated inhibition of serotonergic neurons. Eur. J. Pharmacol. 143:195–204.

    Article  PubMed  Google Scholar 

  • Insel, P. A., and Motulsky, H. J. (1984). A hypothesis linking intracellular sodium, membrane receptors, and hypertension. Life Sci. 34:1009–1013.

    Article  PubMed  Google Scholar 

  • Ishizawa, Y., Pidikiti, R., Liebman, P. A., and Eckenhoff, R. G. (2002). G protein-coupled receptors as direct targets of inhaled anesthetics. Mol. Pharmacol. 61:945–952.

    Article  PubMed  Google Scholar 

  • Jacobs, B. L., and Azmitia, E. C. (1992). Structure and function of the brain serotonin system. Physiol. Rev. 72:165–229.

    PubMed  Google Scholar 

  • Javadekar-Subhedar, V., and Chattopadhyay, A. (2004). Temperature-dependent interaction of the bovine hippocampal serotonin1A receptor with G-proteins. Mol. Membr. Biol. 21:119–123.

    Article  PubMed  Google Scholar 

  • Jick, H., Zornberg, G. L., Jick, S. S., Seshadri, S., and Drachman, D. A. (2000). Statins and the risk of dementia. Lancet 356:1627–1631.

    Article  PubMed  Google Scholar 

  • Jones, M. B., and Garrison, J. C. (1999). Instability of the G-protein β5 subunit in detergent. Anal. Biochem. 268:126–133.

    Article  PubMed  Google Scholar 

  • Kabara, J. J. (1973). A critical review of brain cholesterol metabolism. Prog. Brain Res. 40:363–382.

    PubMed  Google Scholar 

  • Kalipatnapu, S., and Chattopadhyay, A. (2004). Interaction of serotonin1A receptors from bovine hippocampus with tertiary amine local anesthetics. Cell. Mol. Neurobiol. 24:403–422.

    Article  PubMed  Google Scholar 

  • Kalipatnapu, S., Pucadyil, T. J., and Chattopadhyay, A. (2003a). Cell surface organization and dynamics of the serotonin1A receptors in the membrane environment. Mol. Biol. Cell 14:78a.

    Article  Google Scholar 

  • Kalipatnapu, S., Pucadyil, T. J., and Chattopadhyay, A. (2003b). The serotonin-1A receptor and its interaction with membrane lipids. J. Neuorochem. 87(Suppl. 1):80.

    Google Scholar 

  • Kalipatnapu, S., Pucadyil, T. J., Harikumar, K. G., and Chattopadhyay, A. (2004). Ligand binding characteristics of the human serotonin1A receptor heterologously expressed in CHO cells. Biosci. Rep. 24:101–115.

    Article  PubMed  Google Scholar 

  • Karnik, S. S., Gogonea, S., Patil, S., Saad, Y., and Takezako, T. (2003). Activation of G-protein-coupled receptors: A common molecular mechanism. Trends Endocrinol. Metab. 14:431–437.

    Article  PubMed  Google Scholar 

  • Kent, R. S., De Lean, A., and Lefkowitz, R. J. (1980). A quantitative analysis of beta-adrenergic receptor interactions: resolution of high and low affinity states of the receptor by computer modeling of ligand binding data. Mol. Pharmacol. 17:14–23.

    PubMed  Google Scholar 

  • Kia, H. K., Miquel, M.-C., Brisorgueil, M.-J., Daval, G., Riad, M., El Mestikawy, S., Hamon, M., and Vergé, D. (1996). Immunocytochemical localization of serotonin1A receptors in the rat central nervous system. J. Comp. Neurol. 365:289–305.

    Article  PubMed  Google Scholar 

  • Kirchgessner, A. L., Liu, M. T., Howard, M. J., and Gershon, M. D. (1993). Detection of the 5-HT1A receptor and 5-HT1A mRNA in the rat bowel and pancreas: Comparision with 5-HT1P receptors. J. Comp. Neurol. 327:233–250.

    Article  PubMed  Google Scholar 

  • Kirsch, C., Eckert, G. P., and Mueller, W. E. (2003). Statin effects on cholesterol micro-domains in brain plasma membranes. Biochem. Pharmacol. 65:843–856.

    Article  PubMed  Google Scholar 

  • Kobilka, B. K., Frielle, T., Collins, S., Yang-Feng, T., Kobilka, T. S., Francke, U., Lefkowitz, R. J., and Caron, M. G. (1987). An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature 329:75–79.

    Article  PubMed  Google Scholar 

  • Kowal, D., Zhang, J., Nawoschik, S., Ochalski, R., Vlattas, A., Shan, Q., Schechter, L., and Dunlop, J. (2002). The C-terminus of Gi family of G-proteins as a determinant of 5-HT1A receptor coupling. Biochem. Biophys. Res. Commun. 294:655–659.

    Article  PubMed  Google Scholar 

  • Kung, H. F., Kung, M.-P., Clarke, W., Maayani, S., and Zhuang, Z.-P. (1994b). A potential 5-HT1A receptor antagonist: p-MPPI. Life Sci. 55:1459–1462.

    Article  Google Scholar 

  • Kung, M.-P., Zhuang, Z. P., Frederick, D., Kung, H. F. (1994a). In vivo binding of [123I]4-(2′-methoxyphenyl)-1-[2′-(N-2′′-pyridinyl)-p-iodobenzamido-]ethyl-piperazine, p-MPPI, to 5-HT1A receptors in rat brain. Synapse 18:359–366.

    Article  Google Scholar 

  • Kung, M.-P., Frederick, D., Zhuang, Z.-P., and Kung, H. F. (1995). 4-(2′-Methoxy-phenyl)-1-[2′-(N-2′′-pyridinyl)-p-iodobenzamido]-ethyl-piperazine ([125I]p-MPPI) as a new selective radioligand of serotonin-1A sites in rat brain: In vitro binding and autoradiographic studies. J. Pharmacol. Exp. Ther. 272:429–437.

    PubMed  Google Scholar 

  • Lam, S., Shen, Y., Nguyen, T., Messier, T. L., Brann, M., Comings, D., George, S. R., and O’Dowd, B. F. (1996). A serotonin receptor gene (5HT1A) variant found in a Tourette’s syndrome patient. Biochem. Biophys. Res. Commun. 219:853–858.

    Article  PubMed  Google Scholar 

  • Langlois, X., El Mestikawy, E., Arpin, M., Triller, A., Hamon, M., and Darmon, M. (1996). Differential addressing of 5-HT1A and 5-HT1B receptors in transfected LLC-PK1 epithelial cells: A model of receptor targeting in neurons. Neuroscience 74:297–302.

    Article  PubMed  Google Scholar 

  • Lee, A. G. (2003). Lipid-protein interactions in biological membranes: A structural perspective. Biochim. Biophys. Acta 1612:1–40.

    PubMed  Google Scholar 

  • Lembo, P. M., and Albert, P. R. (1995). Multiple phosphorylation sites are required for pathway-selective uncoupling of the 5-hydroxytryptamine1A receptor by protein kinase C. Mol. Pharmacol. 48:1024–1029.

    PubMed  Google Scholar 

  • Lembo, P. M., Ghahremani, M. H., Morris, S. J., and Albert, P. R. (1997). A conserved threonine residue in the second intracellular loop of the 5-hydroxytryptamine1A receptor directs signaling specificity. Mol. Pharmacol. 52:164–171.

    PubMed  Google Scholar 

  • Lemonde, S., Turecki, G., Bakish, D., Du, L., Hrdina, P. D., Bown, C. D., Sequeira, A., Kushwaha, N., Morris, S. J., Basak, A., Ou, X.-M., and Albert, P. R. (2003). Impaired repression at a 5-hydroxytryptamine1A receptor gene polymorphism associated with major depression and suicide. J. Neurosci. 23:8788–8799.

    PubMed  Google Scholar 

  • Liscum, L., and Underwood, K. W. (1995). Intracellular cholesterol transport and compartmentation. J. Biol. Chem. 270:15443–15446.

    Article  PubMed  Google Scholar 

  • Liu, Y. F., Jakobs, K. H., Rasenick, M. M., and Albert, P. R. (1994). G protein specificity in receptor-effector coupling. Analysis of the roles of Go and Gi2 in GH4C1 pituitary cells. J. Biol. Chem. 269:13880–13886.

    PubMed  Google Scholar 

  • Maiti, S., Shear, J. B., Williams, R. M., Zipfel, W. R., and Webb, W. W. (1997). Measuring serotonin distribution in live cells with three-photon excitation. Science 275:530–532.

    Article  PubMed  Google Scholar 

  • Mayor, S., and Maxfield, F. R. (1995). Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment. Mol. Biol. Cell. 6:929–944.

    PubMed  Google Scholar 

  • Meneses, A. (1999). 5-HT system and cognition. Neurosci. Biobehav. Rev. 23:1111–1125.

    Article  PubMed  Google Scholar 

  • Milligan, G., Kellett, E., Dacquet, C., Dubreuil, V., Jacoby, E., Millan, M. J., Lavielle, G., and Spedding, M. (2001). S 14506: Novel receptor coupling at 5-HT1A receptors. Neuropharmacology 40:334–344.

    Article  PubMed  Google Scholar 

  • Mukherjee, S., and Chattopadhyay, A. (1996). Membrane organization at low cholesterol concentrations: A study using 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled cholesterol. Biochemistry 35:1311–1322.

    Article  PubMed  Google Scholar 

  • Mukherjee, S., Soe, T. T., and Maxfield, F. R. (1999). Endocytic sorting of lipid analogues differing solely in the chemistry of their hydrophobic tails. J. Cell. Biol. 144:1271–1284.

    Article  PubMed  Google Scholar 

  • Mulheron, J. G., Casanas, S. J., Arthur, J. M., Garnovskaya, M. N., Gettys, T. W., and Raymond, J. R. (1994). Human 5-HT1A receptor expressed in insect cells activates endogenous G(o)-like G protein(s). J. Biol. Chem. 269:12954–12962.

    PubMed  Google Scholar 

  • Munro, S. (2003). Lipid rafts: Elusive or illusive? Cell 115:377–388.

    Article  PubMed  Google Scholar 

  • Murphy, D. L., Wichems, C., Li, Q., and Heils, A. (1999). Molecular manipulations as tools for enhancing our understanding of 5-HT neurotransmission. Trends Pharmacol. Sci. 20:246–252.

    Article  PubMed  Google Scholar 

  • Nebigil, C. G., and Maroteaux, L. (2001). A novel role for serotonin in heart. Trends Cardiovasc. Med. 11:329–335.

    Article  PubMed  Google Scholar 

  • Oakey, R. J., Caron, M. G., Lefkowitz, R. J., and Seldin, M. F. (1991). Genomic organization of adrenergic and serotonin receptors in the mouse: Linkage mapping of sequence-related genes provides a method for examining mammalian chromosome evolution. Genomics 10:338–344.

    Article  PubMed  Google Scholar 

  • Ohno, M., and Watanabe, S. (1996). Blockade of 5-HT1A receptors compensates loss of hippocampal cholinergic neurotransmission involved in working memory of rats. Brain Res. 736:180–188.

    Article  PubMed  Google Scholar 

  • Oksenberg, D., and Peroutka, S. J. (1988). Antagonism of 5-hydroxytryptamine1A (5-HT1A) receptor-mediated modulation of adenylate cyclase activity by pindolol and propranolol isomers. Biochem. Pharmacol. 37:3429–3433.

    Article  PubMed  Google Scholar 

  • Palacios, J. M., Waeber, C., Hoyer, D., and Mengod, G. (1990). Distribution of serotonin receptors. Ann. N. Y. Acad. Sci. 600:36–52.

    PubMed  Google Scholar 

  • Pandey, S. C., Lumeng, L., and Li, T.-K. (1996). Serotonin2C receptors and serotonin2C receptor-mediated phosphoinositide hydrolysis in the brain of alcohol-preferring and alcohol-nonpreferring rats. Alcohol. Clin. Exp. Res. 20:1038–1042.

    PubMed  Google Scholar 

  • Papakostas, G. I., Öngür, D., Iosifescu, D. V., Mischoulon, D., and Fava, M. (2004). Cholesterol in mood and anxiety disorders: Review of the literature and new hypotheses. Eur. Neuropsychopharmacol. 14:135–142.

    Article  PubMed  Google Scholar 

  • Papoucheva, E., Dumuis, A., Sebben, M., Richter, D. W., and Ponimaskin, E. G. (2004). The 5-hydroxytryptamine1A receptor is stably palmitoylated, and acylation is critical for communication of receptor with Gi protein. J. Biol. Chem. 279:3280–3291.

    Article  PubMed  Google Scholar 

  • Parks, C. L., Robinson, P. S., Sibille, E., Shenk, T., and Tóth, M. (1998). Increased anxiety of mice lacking the serotonin1A receptor. Proc. Natl. Acad. Sci. U.S.A. 95:10734–10739.

    Article  PubMed  Google Scholar 

  • Parsons, L. H., Kerr, T. M., and Tecott, L. H. (2001). 5-HT1A receptor mutant mice exhibit enhanced tonic, stress-induced and fluoxetine-induced serotonergic neurotransmission. J. Neurochem. 77:607–617.

    Article  PubMed  Google Scholar 

  • Peroutka, S. J., and Howell, T. A. (1994). The molecular evolution of G Protein-coupled receptors: Focus on 5-hydroxytryptamine receptors. Neuropharmacology 33:319–324.

    Article  PubMed  Google Scholar 

  • Pierce, K. L., Premont, R. T., and Lefkowitz, R. J. (2002). Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3:639–650.

    Article  PubMed  Google Scholar 

  • Pompeiano, M., Palacios, J. M., and Mengod, G. (1992). Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: Correlation with receptor binding. J. Neurosci. 12:440–453.

    PubMed  Google Scholar 

  • Porter, F. D. (2002). Malformation syndromes due to inborn errors of cholesterol synthesis. J. Clin. Invest. 110:715–724.

    Article  PubMed  Google Scholar 

  • Probst, W. C., Snyder, L. A., Schuster, D. I., Brosius, J., and Sealfon, S. C. (1992). Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol. 11:1–20.

    PubMed  Google Scholar 

  • Pucadyil, T. J., and Chattopadhyay, A. (2003). Acute cholesterol depletion diminishes cell surface heterogeneity in lateral diffusion of serotonin1A receptors. Biophys. J. 84: 522a.

    Google Scholar 

  • Pucadyil, T. J., and Chattopadhyay, A. (2004a). Cholesterol modulates ligand binding and G-protein coupling to serotonin1A receptors from bovine hippocampus. Biochim. Biophys. Acta 1663:188–200.

    Google Scholar 

  • Pucadyil, T. J., and Chattopadhyay, A. (2004b). Exploring detergent insolubility in bovine hippocampal membranes: A critical assessment of the requirement for cholesterol. Biochim. Biophys. Acta 1661:9–17.

    Google Scholar 

  • Pucadyil, T. J., Tewary, P., Madhubala, R., and Chattopadhyay, A. (2004). Cholesterol is required for Leishmania donovani infection: Implications in leishmaniasis. Mol. Biochem. Parasitol. 133:145–152.

    Article  PubMed  Google Scholar 

  • Ramboz, S., Oosting, R., Amara, D. A., Kung, H. F., Blier, P., Mendelsohn, M., Mann, J. J., Brunner, D., and Hen, R. (1998). Serotonin receptor1A knockout: An animal model of anxiety-related disorder. Proc. Natl. Acad. Sci. U.S.A. 95:14476–14481.

    Article  PubMed  Google Scholar 

  • Rapport, M. M., Green, A. A., and Page, I. H. (1948). Serum vasoconstrictor (serotonin). IV. Isolation and characterization. J. Biol. Chem. 176:1243–1251.

    Google Scholar 

  • Raymond, J. R., Kim, J., Beach, R. E., and Tisher, C. C. (1993a). Immunohistochemical mapping of cellular and subcellular distribution of 5-HT1A receptors in rat and human kidneys. Am. J. Physiol. 264:F9–F19.

    Google Scholar 

  • Raymond, J. R., Mukhin, Y. V., Gelasco, A., Turner, J., Collinsworth, G., Gettys, T. W., Grewal, J. S., and Garnovskaya, M. N. (2001). Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol. Ther. 92:179–212.

    Article  PubMed  Google Scholar 

  • Raymond, J. R., Mukhin, Y. V., Gettys, T. W., and Garnovskaya, M. N. (1999). The recombinant 5-HT1A receptor: G protein coupling and signaling pathways. Br. J. Pharmacol. 127:1751–1764.

    Article  PubMed  Google Scholar 

  • Raymond, J. R., Olsen, C. L., and Gettys, T. W. (1993b). Cell-specific physical and functional coupling of human 5-HT1A receptors to inhibitory G protein alpha-subunits and lack of coupling to Gs alpha. Biochemistry 32:11064–11073.

    Article  Google Scholar 

  • Riad, M., Garcia, S., Watkins, K. C., Jodoin, N., Doucet, E., Langlois, X., El Mestikawy, S., Hamon, M., and Descarries, L. (2000). Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J. Comp. Neurol. 417:181–194.

    Article  PubMed  Google Scholar 

  • Rocha, B. A., Scearce-Levie, K., Lucas, J. J., Hiroi, N., Castanon, N., Crabbe, J. C., Nestler, E. J., and Hen, R. (1998). Increased vulnerability to cocaine in mice lacking the serotonin-1B receptor. Nature 393:175–178.

    Article  PubMed  Google Scholar 

  • Romero, L., Celada, P., and Artigas, F. (1994). Reduction of in vivo striatal 5-hydroxytryptamine release by 8-OH-DPAT after inactivation of Gi/Go proteins in dorsal raphe nucleus. Eur. J. Pharmacol. 265:103–106.

    Article  PubMed  Google Scholar 

  • Rukmini, R., Rawat, S. S., Biswas, S. C., and Chattopadhyay, A. (2001). Cholesterol organization in membranes at low concentrations: effects of curvature stress and membrane thickness. Biophys. J. 81:2122–2134.

    PubMed  Google Scholar 

  • Samama, P., Cotecchia, S., Costa, T., and Lefkowitz, R. J. (1993). A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. J. Biol. Chem. 268:4625–4636.

    PubMed  Google Scholar 

  • Sarnyai, Z., Sibille, E. L., Pavlides, C., Fenster, R. J., McEwen, B. S., and Tóth, M. (2000). Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin1A receptors. Proc. Natl. Acad. Sci. U.S.A. 97:14731–14736.

    Article  PubMed  Google Scholar 

  • Schoeffter, P., and Hoyer, D. (1988). Centrally acting hypotensive agents with affinity for 5-HT1A binding sites inhibit forskolin-stimulated adenylate cyclase activity in calf hippocampus. Br. J. Pharmacol. 95:975–985.

    PubMed  Google Scholar 

  • Serres, F., Li, Q., Garcia, F., Raap, D. K., Battaglia, G., Muma, N. A., and Van de Kar, L. D. (2000). Evidence that Gz-proteins couple to hypothalamic 5-HT1A receptors in vivo. J. Neurosci. 20:3095–3103.

    PubMed  Google Scholar 

  • Shanti, K., and Chattopadhyay, A. (2000). A new paradigm in the functioning of G-protein-coupled receptors. Curr. Sci. 79:402–403.

    Google Scholar 

  • Shogomori, H., and Brown, D. A. (2003). Use of detergents to study membrane rafts: the good, the bad, and the ugly. Biol. Chem. 384:1259–1263.

    Article  PubMed  Google Scholar 

  • Silvius, J. R. (1992). Solubilization and functional reconstitution of biomembrane components. Annu. Rev. Biophys. Biomol. Struct. 21:323–348.

    Article  PubMed  Google Scholar 

  • Simons, K., and Ikonen, E. (1997). Functional rafts in cell membranes. Nature 387:569–572.

    PubMed  Google Scholar 

  • Simons, K., and Ikonen, E. (2000). How cells handle cholesterol. Science 290:1721–1726.

    Article  PubMed  Google Scholar 

  • Simons, K., and Toomre, D. (2000). Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1:31–39.

    PubMed  Google Scholar 

  • Simons, K., and van Meer, G. (1988). Lipid sorting in epithelial cells. Biochemistry 27:6197–6202.

    Article  PubMed  Google Scholar 

  • Singh, J. K., Chromy, B. A., Boyers, M. J., Dawson, G., and Banerjee, P. (1996). Induction of the serotonin1A receptor in neuronal cells during prolonged stress and degeneration. J. Neurochem. 66:2361–2372.

    PubMed  Google Scholar 

  • Sooksawate, T., and Simmonds, M. A. (1998). Increased membrane cholesterol reduces the potentiation of GABAA currents by neurosteroids in dissociated hippocampal neurons. Neuropharmacology 37:1103–1110.

    Article  PubMed  Google Scholar 

  • Stam, N. J., Van Huizen, F., Van Alebeek, C., Brands, J., Dijkema, R., Tonnaer, J. A., and Olijve, W. (1992). Genomic organization, coding sequence and functional expression of human 5-HT2 and 5-HT1A receptor genes. Eur. J. Pharmacol. 227:153–162.

    Article  PubMed  Google Scholar 

  • Steegmans, P. H. A., Fekkes, D., Hoes, A. W., Bak, A. A. A., van der Does, E., and Grobbee, D. E. (1996). Low serum cholesterol concentration and serotonin metabolism in men. Br. Med. J. 312:221.

    Google Scholar 

  • Strader, C. D., Candelore, M. R., Hill, W. S., Sigal, I. S., and Dixon, R. A. F. (1989). Identification of two serine residues involved in agonist activation of β-adrenergic receptor. J. Biol. Chem. 264:13572–13578.

    PubMed  Google Scholar 

  • Sumiyoshi, T., Stockmeier, C. A., Overholser, J. C., Dilley, G. E., and Meltzer, H. Y. (1996). Serotonin1A receptors are increased in postmortem prefrontal cortex in schizophrenia. Brain Res. 708:209–214.

    Article  PubMed  Google Scholar 

  • Sundaram, H., Newman-Tancredi, A., and Strange, P. G. (1993). Characterization of recombinant human serotonin 5HT1A receptors expressed in chinese hamster ovary cells. [3H]spiperone discrimates between the G-protein-coupled and -uncoupled forms. Biochem. Pharmacol. 45:1003–1009.

    Article  PubMed  Google Scholar 

  • Tan, W., Parpura, V., Haydon, P. G., and Yeung, E. S. (1995). Neurotransmitter imaging in living cells based on native fluorescence detection. Anal. Chem. 67:2575–2579.

    Article  PubMed  Google Scholar 

  • Thielen, R. J., and Frazer, A. (1995). Effects of novel 5-HT1A receptor antagonists on measures of post-synaptic 5-HT1A receptor activation in vivo. Life Sci. 56:PL163–168.

    Article  PubMed  Google Scholar 

  • Turley, S. D., Bruns, D. K., and Dietschy, J. M. (1998). Preferential utilization of newly synthesized cholesterol for brain growth in neonatal lambs. Am. J. Physiol. 274:E1099–E1105.

    PubMed  Google Scholar 

  • Twarog, B. M., and Page, I. H. (1953). Serotonin content of some mammalian tissues and urine and a method for its determination. Am. J. Physiol. 175:157–161.

    PubMed  Google Scholar 

  • Udenfriend, S., Bogdanski, D. F., and Weissbach, H. (1955). Fluorescence characteristics of 5-hydroxytryptamine (serotonin). Science 122:972–973.

    PubMed  Google Scholar 

  • Unger, V. M., Hargrave, P. A., Baldwin, J. M., and Schertler, G. F. (1997). Arrangement of rhodopsin transmembrane α-helices. Nature 389:203–206.

    Article  PubMed  Google Scholar 

  • van der Goot, F. G., and Harder, T. (2001). Raft membrane domains: From a liquid-ordered membrane phase to a site of pathogen attack. Semin. Immunol. 13:89–97.

    Article  PubMed  Google Scholar 

  • Varrault, A., Le Nguyen, D., McClue, S., Harris, B., Jouin, P., and Bockaert, J. (1994). 5-Hydroxytryptamine1A receptor synthetic peptides. Mechanism of adenylyl cyclase inhibition. J. Biol. Chem. 269:16720–16725.

    PubMed  Google Scholar 

  • Waterham, H. R., and Wanders, R. J. A. (2000). Biochemical and genetic aspects of 7-dehydrocholesterol reductase and Smith-Lemli-Opitz syndrome. Biochim. Biophys. Acta 1529:340–356.

    PubMed  Google Scholar 

  • Weiss, S., Sebben, M., Kemp, D. E., and Bockaert, J. (1986). Serotonin 5-HT1 receptors mediate inhibition of cyclic AMP production in neurons. Eur. J. Pharmacol. 120:227–230.

    Article  PubMed  Google Scholar 

  • Whitaker-Azmitia, P. M. (1999). The discovery of serotonin and its role in neuroscience. Neuropsychopharmacology 21:2S–8S.

    PubMed  Google Scholar 

  • Wolozin, B., Kellman, W., Ruosseau, P., Celesia, G. G., and Siegel, G. (2000). Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch. Neurol. 57:1439–1443.

    Article  PubMed  Google Scholar 

  • Wood, W. G., Schroeder, F., Avdulov, N. A., Chochina, S. V., and Igbavboa, U. (1999). Recent advances in brain cholesterol dynamics: transport, domains, and Alzheimer’s disease. Lipids 34:225–234.

    PubMed  Google Scholar 

  • Xiao, Z.-L., Chen, Q., Amaral, J., Biancani, P., and Behar, J. (2000). Defect of receptor-G protein coupling in human gallbladder with cholesterol stones. Am. J. Physiol. Gastrointest. Liver Physiol. 278:G251–G258.

    PubMed  Google Scholar 

  • Xiao, Z.-L., Chen, Q., Amaral, J., Biancani, P., Jensen, R. T., and Behar, J. (1999). CCK receptor dysfunction in muscle membranes from human gallbladders with cholesterol stones. Am. J. Physiol. 276:G1401–G1407.

    PubMed  Google Scholar 

  • Yabaluri, N., and Medzihradsky, F. (1997). Regulation of μ-opioid receptor in neural cells by extracellular sodium. J. Neurochem. 68:1053–1061.

    PubMed  Google Scholar 

  • Yeagle, P. L. (1985). Cholesterol and the cell membrane. Biochim. Biophys. Acta 822:267–287.

    PubMed  Google Scholar 

  • Yocca, F. D., and Maayani, S. (1990). 5-HT receptors linked to adenylyl cyclase activity in mammalian brain. Ann. N. Y. Acad. Sci. 600:212–223.

    PubMed  Google Scholar 

  • Yohrling, G. J., Jiang, G. C.-T., DeJohn, M. M., Robertson, D. J., Vrana, K. E., and Cha, J.-H. J. (2002). Inhibition of tryptophan hydroxylase activity and decreased 5-HT1A receptor binding in a mouse model of Huntington’s disease. J. Neurochem. 82:1416–1423.

    Article  PubMed  Google Scholar 

  • Zifa, E., and Fillion, G. (1992). 5-Hydroxytryptamine receptors. Pharmacol. Rev. 44:401–458.

    PubMed  Google Scholar 

  • Zureik, M., Courbon, D., and Ducimetière, P. (1996). Serum cholesterol concentration and death from suicide in men: Paris prospective study I. Br. Med. J. 313:649–651.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabha Chattopadhyay.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pucadyil, T.J., Kalipatnapu, S. & Chattopadhyay, A. The Serotonin 1A A Receptor: A Representative Member of the Serotonin Receptor Family. Cell Mol Neurobiol 25, 553–580 (2005). https://doi.org/10.1007/s10571-005-3969-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-005-3969-3

Key Words

  • serotonin
  • serotonin1A (5-HT1A) receptor
  • bovine hippocampus
  • fluorescence
  • 8-OH-DPAT
  • cholesterol