Cellular and Molecular Neurobiology

, Volume 24, Issue 6, pp 769–780 | Cite as

Effects of NMDA-Receptor Antagonist Treatment on c-fos Expression in Rat Brain Areas Implicated in Schizophrenia

  • Jussi Väisänen
  • Jouni Ihalainen
  • Heikki Tanila
  • Eero Castrén
Article

Abstract

1. The noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists produce behavioral responses that closely resemble both positive and negative symptoms of schizophrenia. These drugs also induce excitatory and neurotoxic effects in limbic cortical areas.

2. We have here mapped the brain areas which show increased activity in response to noncompetitive NMDA-receptor antagonist administration concentrating especially to those brain areas that have been suggested to be relevant in the pathophysiology of schizophrenia.

3. Rats were treated intraperitoneally with a NMDA-receptor antagonist MK801 and activation of brain areas was detected by monitoring the expression of c-fos mRNA by using in situ hybridization.

4. MK801 induced c-fos mRNA expression of in the retrosplenial, entorhinal, and prefrontal cortices. Lower c-fos expression was observed in the layer IV of the parietal and frontal cortex. In the thalamus, c-fos mRNA expression was detected in the midline nuclei and in the reticular nucleus but not in the dorsomedial nucleus. In addition, c-fos mRNA was expressed in the anterior olfactory nucleus, the ventral tegmental area, and in cerebellar granule neurons.

5. NMDA-receptor antagonist ketamine increased dopamine release in the parietal cortex, in the region where NMDA-receptor antagonist increased c-fos mRNA expression.

6. Thus, the psychotropic NMDA-receptor antagonist induced c-fos mRNA expression in most, but not all, brain areas implicated in the pathophysiology of schizophrenia. The high spatial resolution of in situ hybridization may help to define regions of interest for human imaging studies.

schizophrenia MK801 c-fos neural circuits NMDA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreasen, N. C. (1999). A unitary model of schizophrenia---Bleuler’s ‘‘fragmented phrene’’ as schizencephaly. Arch. Gen. Psychiatry 56781–787.PubMedGoogle Scholar
  2. Braff, D. L. (1999). Connecting the ‘‘dots’’ of brain dysfunction in schizophrenia. Arch. Gen. Psychiatry 56791–793.PubMedGoogle Scholar
  3. Castrén, E., Berzaghi, M. P., Lindholm, D., and Thoenen, H. (1993). Differential effects of MK-801 on the brain-derived neurotrophic factor mRNA levels in different regions of rat brain. Exp. Neurol. 122244–252.PubMedGoogle Scholar
  4. DeLeonibus, E., Mele, A., Oliverio, A., and Pert, A. (2002). Distinct pattern of c-fos mRNA expression after systematic and intra-accumbens amphetamine and MK-801. Neuroscienc 11567–78.Google Scholar
  5. Dragunow, M., and Faull, R. L. M. (1990). MK-801 induces c-fos protein in thalamic and neocortical neurons of rat brain. Neurosci. Lett. 113144–150.PubMedGoogle Scholar
  6. Farber, N. B., Wozniak, D. F., Price, M. T., Labruyere, J., Huss, J., St. Peter, H., and Olney, J. W. (1995). Age-specific neurotoxicity in the rat associated with NMDA receptor blockade: Potential relevance to schizophrenia? Biol Psychiatry 38788–796.PubMedGoogle Scholar
  7. Farber, N. F., Price, M. T., Labruyere, J., Nemnich, J., St. Peter, H., Wozniak, D. F., and Olney, J. W. (1993). Antipsychotic drugs block phencyclidine receptor-mediated neurotoxicity. Biol. Psychiatry 34119–121.PubMedGoogle Scholar
  8. Gass, P., Herdegen, T., Bravos, R., and Kiessling, M. (1993). Induction and suppression of immediate early genes in specific rat brain regions by the non-competitive N-methyl-D-aspartate receptor antagonist MK-801. Neuroscienc 53749–758.PubMedGoogle Scholar
  9. Gogos, J. A., and Karayiorgou, M. (2001). ‘‘Targeting’’ schizophrenia in mice. Am. J. Med. Genet. 10550–52.PubMedGoogle Scholar
  10. Hughes, P., and Dragunow, M. (1995). Induction of immediate early genes and the control of neurotransmitter-regulated gene-expression within the nervous system. Pharmacol. Rev. 47134–178.Google Scholar
  11. Ihalainen, J. A., and Tanila, H. (2002). In vivoregulation of dopamine and noradrenaline release by alpha2A-adrenoceptors in the mouse prefrontal cortex. Eur. J. Neurosci. 151789–1794.PubMedGoogle Scholar
  12. Javitt, D. C., and Zukin, S. R. (1991). Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry 1481301–1308.PubMedGoogle Scholar
  13. Kashiwa, A., Nishikawa, T., Nishijima, K., Umino, A., and Takahashi, K. (1995). Dizocilpine (MK-801) elicits a tetrodotoxin-sensitive increase in extracellular release of dopamine in rat medial frontal cortex. Neurochem. Int. 26269–279.PubMedGoogle Scholar
  14. Krystal, J. H., Karper, L. P., Seibyl, J. P., Freeman, G. K., Delaney, R., Bremner, J. D., Heninger, G. R., Bowers, M. B., and Charney, D. S. (1994). Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51199–214.PubMedGoogle Scholar
  15. Kurachi, M. (2003a). Pathogenesis of schizophrenia: Part 1. Symptomology, cognitive characteristics and brain morphology. Psychiatry Clin. Neurosci. 573–8.Google Scholar
  16. Kurachi, M. (2003b). Pathogenesis of schizophrenia: Part II. Temporo-frontal two step hypothesis. Psychiatry Clin. Neurosci. 579–15.Google Scholar
  17. Lahti, A. C., Koffel, B., LaPorte, D., and Tamminga, C. (1995). Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacolog 139–19.PubMedGoogle Scholar
  18. Lee, S., Rivier, C., and Torres, G. (1994). Induction of c-fos and CRF mRNA by MK801 in the parvocellular paraventricular nucleus of the rat hypothalamus. Mol. Brain Res. 24192–198.PubMedGoogle Scholar
  19. Morgan, J. I., and Curran, T. (1991). Stimulus-transcription coupling in the nervous system: Involvement of the inducible proto-oncogenes fos and jun. Annu. Rev. Neurosci. 14421–451.PubMedGoogle Scholar
  20. Näkki, R., Sharp, F. R., and Sagar, S. M. (1996). Fos expression in the brainstem and cerebellum following phencyclidine and MK-801. J. Neurosci. Res. 43203–212.PubMedGoogle Scholar
  21. Olney, J. W., Labruyere, J., and Price, M. T. (1989). Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Scienc 2441360–1362.PubMedGoogle Scholar
  22. Paxinos, G., and Watson, C. (1986). The Rat Brain in Stereotaxic Coordinates, Academic Press, Sydney.Google Scholar
  23. Riedel, G., Platt, B., and Micheau, J. (2003). Glutamate receptor function in learning and memory. Behav. Brain Res. 1401–47.PubMedGoogle Scholar
  24. Rose, J. E., and Woolsey, C. N. (1948). The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat. Res. Publ. Ass. Nerv. Ment. Dis. 27210–232.Google Scholar
  25. Schmidt, C. J., Fadayel, G. M. (1996). Regional effects of MK-801 on dopamine release: Effects of competitive NMDA or 5-HT2A receptor blockade. J. Pharmacol. Exp. Ther. 2771541–1549.PubMedGoogle Scholar
  26. Sharp, F. R., Jasper, P., Hall, J., Noble, L., and Sagar, S. M. (1991). MK-801 and ketamine induce heat shock protein HSP72 in injured neurons in posterior cingulate and retrosplenial cortex. Ann. Neurol. 30801–809.PubMedGoogle Scholar
  27. Sharp, F. R., Tomitaka, M., Bernaudin, M., and Tomitaka, S. (2001). Psychosis: Pathological activation of limbic thalamocortical circuits by psychotomimetics and schizophrenia? Trends Neurosci. 24330–334.PubMedGoogle Scholar
  28. Taffe, M. A., Davis, S. A., Gutierrez, T., and Gold, L. H. (2002). Ketamine impairs multiple cognitive domains in rhesus monkey. Drug Alcohol Depend. 68175–187.PubMedGoogle Scholar
  29. Tekin, S., and Cummings, J. L. (2002). Frontal-subcortical circuits and clinical neuropsychiatry–-An update. J. Psychosom. Res. 53647–654.PubMedGoogle Scholar
  30. Thaker, G. K., and Carpenter, W. T., Jr. (2001). Advances in schizophrenia. Nat. Med. 7667–671.PubMedGoogle Scholar
  31. Tomitaka, S., Tomitaka, M., Tolliver, B. K., and Sharp, F. R. (2000). Bilateral blockade of NMDA receptors in anterior thalamus by dizocilpine (MK801) injures pyramidal neurons in rat retrosplenial cortex. Eur. J. Neurosci. 211420–1430.Google Scholar
  32. Uylings, H. B., and van Eden, C. G. (1990). Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Prog. Brain Res. 8531–62.CrossRefPubMedGoogle Scholar
  33. Väisänen, J., Lindén, A. M., Lakso, M., Wong, G., Heinemann, U., and Castrén, E. (1999). Excitatory actions of NMDA receptor antagonists in rat entorhinal cortex and cultured entorhinal cortical neurons. Neuropsychopharmacolog 21137–146.PubMedGoogle Scholar
  34. Verma, A., and Moghaddam, B. (1996). NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: Modulation by dopamine. J. Neurosci. 16373–379.PubMedGoogle Scholar
  35. Wisden, W., and Morris, B. (1994). In situ hybridization with synthetic oligonucleotide probes. In Wisden, W., and Morris, B. (eds.), In Situ Hybridization Protocols for Neurobiology, Academic Press, London, pp. 1–34.Google Scholar
  36. Zhang, D. X., and Bertram, E. H. (2002). Midline thalamic region: Widespread excitatory input to the entorhinal cortex and amygdala. J. Neurosci. 223277–3284.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Jussi Väisänen
    • 1
    • 2
  • Jouni Ihalainen
    • 3
  • Heikki Tanila
    • 3
    • 4
  • Eero Castrén
    • 1
    • 4
  1. 1.A.I. Virtanen InstituteUniversity of KuopioFinland
  2. 2.Department of PsychiatryUniversity of KuopioFinland
  3. 3.Department of Neuroscience and NeurologyUniversity of KuopioFinland
  4. 4.Neuroscience CenterUniversity of HelsinkiFinland

Personalised recommendations