Skip to main content
Log in

Antifouling microfiltration membrane filter based on acetylated cellulose ether using vapor-induced phase separation

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bio-based polymers and their derivatives are promising green alternatives to petroleum-based polymers in the preparation of membranes. In this study, we developed microfiltration membranes based on acetylated cellulose ether (ACE), a high-molecular-weight cellulose-derived biopolymer, using vapor-induced phase separation. The properties of these membranes were analyzed and compared with those of a commercial cellulose acetate (CA) membrane. The pore sizes and pore distributions of the ACE membranes were controlled by the polyethylene glycol additives used in the preparation of the membranes. The ACE membranes with pore sizes of 0.20–0.53 μm were effective in removing Escherichia coli bacteria, demonstrating their viability in sterilization applications. The ACE membrane also exhibited high pure water permeance values (25,000 L m−2 h−1 bar−1) and lower non-specific protein binding compared to those of the commercial CA membrane. We believe that our study findings will promote the use of bio-based ACE membranes in commercial applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

References

  • Ahn S-H, Kim I-C, Song D-H, Jegal J, Kwon Y-N, Rhee H-W (2013) Pore structure and separation properties of thin film composite forward osmosis membrane with different support structures. Membrane J 23(3):251–256

    Google Scholar 

  • Arthanareeswaran G, Thanikaivelan P, Srinivasn K, Mohan D, Rajendran M (2004) Synthesis, characterization and thermal studies on cellulose acetate membranes with additive. Eur Polym J 40(9):2153–2159

    Article  CAS  Google Scholar 

  • Asad A, Sameoto D, Sadrzadeh M (2020) Overview of membrane technology. In: Nanocomposite membranes for water and gas separation. Elsevier, pp 1–28

  • Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  • Barambu NU, Bilad MR, Bustam MA et al (2020) Development of polysulfone membrane via vapor-induced phase separation for oil/water emulsion filtration. Polymers 12(11):2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boom RM, Wienk IM, van den Boomgaard T, Smolders CA (1992) Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive. J Membr Sci 73(2):277–292

    Article  CAS  Google Scholar 

  • Bukackova M, Rusnok P, Marsalek R (2018) Mathematical methods in the calculation of the Zeta potential of bsa. J Solut Chem 47(12):1942–1952

    Article  CAS  Google Scholar 

  • Chakrabarty B, Ghoshal AK, Purkait MK (2008) Effect of molecular weight of peg on membrane morphology and transport properties. J Membr Sci 309(1):209–221

    Article  CAS  Google Scholar 

  • Chen Z, Deng M, Chen Y, He G, Wu M, Wang J (2004) Preparation and performance of cellulose acetate/polyethyleneimine blend microfiltration membranes and their applications. J Membr Sci 235(1):73–86

    Article  CAS  Google Scholar 

  • Chen J, Li J, Zhan X, Han X, Chen C (2010) Effect of peg additives on properties and morphologies of polyetherimide membranes prepared by phase inversion. Front Chem Eng China 4(3):300–306

    Article  CAS  Google Scholar 

  • Clasen C, Wilhelms T, Kulicke WM (2006) Formation and characterization of chitosan membranes. Biomacromol 7(11):3210–3222

    Article  CAS  Google Scholar 

  • Cleek RL, Ting KC, Eskin SG, Mikos AG (1997) Microparticles of poly (dl-lactic-co-glycolic acid)/poly (ethylene glycol) blends for controlled drug delivery. J Controll Release 48(2–3):259–268

    Article  CAS  Google Scholar 

  • Daufin G, Escudier J-P, Carrère H, Bérot S, Fillaudeau L, Decloux M (2001) Recent and emerging applications of membrane processes in the food and dairy industry. Food Bioprod Process 79(2):89–102

    Article  CAS  Google Scholar 

  • Daufin G, René F, Aimar P (1998) Membrane separations in the processes of food industry. Lavoisier Tech and Doc, France, pp 282–572

    Google Scholar 

  • Decloux M, Prothon F (1998) Fruit juices, vegetable juices and sugar juices. Membr Sep Processes Food Ind, pp 473–501

  • Dong X, Al-Jumaily A, Escobar IC (2018) Investigation of the use of a bio-derived solvent for non-solvent-induced phase separation (nips) fabrication of polysulfone membranes. Membranes 8(2):23

    Article  PubMed  PubMed Central  Google Scholar 

  • Fadaei A, Salimi A, Mirzataheri M (2014) Structural elucidation of morphology and performance of the pvdf/peg membrane. J Polym Res 21(9):1–8

    Article  CAS  Google Scholar 

  • Fischer S, Thümmler K, Volkert B, Hettrich K, Schmidt I, Fischer K (2008) Properties and applications of cellulose acetate. Macromol Symp 262(1):89–96

    Article  CAS  Google Scholar 

  • Galiano F, Briceño K, Marino T, Molino A, Christensen KV, Figoli A (2018) Advances in biopolymer-based membrane preparation and applications. J Membr Sci 564:562–586

    Article  CAS  Google Scholar 

  • Galiano F, Ghanim AH, Rashid KT et al (2019) Preparation and characterization of green polylactic acid (pla) membranes for organic/organic separation by pervaporation. Clean Technol Environ Policy 21(1):109–120

    Article  CAS  Google Scholar 

  • Han J, Cho YH, Kong H, Han S, Park HB (2013) Preparation and characterization of novel acetylated cellulose ether (ace) membranes for desalination applications. J Membr Sci 428:533–545

    Article  CAS  Google Scholar 

  • Hurwitz G, Guillen GR, Hoek EM (2010) Probing polyamide membrane surface charge, zeta potential, wettability, and hydrophilicity with contact angle measurements. J Membr Sci 349(1–2):349–357

    Article  CAS  Google Scholar 

  • Idris A, Yet LK (2006) The effect of different molecular weight peg additives on cellulose acetate asymmetric dialysis membrane performance. J Membr Sci 280(1–2):920–927

    Article  CAS  Google Scholar 

  • Ismail N, Venault A, Mikkola J-P, Bouyer D, Drioli E, Tavajohi Hassan Kiadeh N (2020) Investigating the potential of membranes formed by the vapor induced phase separation process. J Membr Sci 597:117601

    Article  CAS  Google Scholar 

  • Jachimska B, Pajor A (2012) Physico-chemical characterization of bovine serum albumin in solution and as deposited on surfaces. Bioelectrochemistry 87:138–146

    Article  CAS  PubMed  Google Scholar 

  • Jamaluddin NS, Alias NH, Jaafar J et al (2022) Exploring potential of adsorptive-photocatalytic molybdenum disulphide/polyacrylonitrile (mos2/pan) nanofiber coated cellulose acetate (ca) membranes for treatment of wastewater. J Polym Environ 30(12):5290–5300

    Article  CAS  Google Scholar 

  • Jang H, Song D-H, Lee H-J, Lim S-H, Kim I-C, Kwon Y-N (2015) Preparation of dual-layer acetylated methyl cellulose hollow fiber membranes via co-extrusion using thermally induced phase separation and non-solvent induced phase separation methods. J Appl Polym Sci 132:43

    Article  Google Scholar 

  • Janssen D, De Palma R, Verlaak S, Heremans P, Dehaen W (2006) Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide. Thin Solid Films 515(4):1433–1438

    Article  CAS  Google Scholar 

  • Jayalakshmi A, Kim I-C, Kwon Y-N (2015) Cellulose acetate graft-(glycidylmethacrylate-g-peg) for modification of amc ultrafiltration membranes to mitigate organic fouling. RSC Adv 5(60):48290–48300

    Article  CAS  Google Scholar 

  • Jayalakshmi A, Kim I-C, Kwon Y-N (2017) Application of amc uf membranes blended with hydrophilic ca-graft copolymer for rejection of fe (ii)/(iii) ions using various ligands. J Ind Eng Chem 51:54–63

    Article  CAS  Google Scholar 

  • Jena A, Gupta K (2010) Advances in pore structure evaluation by porometry. Chem Eng Technol 33(8):1241–1250

    Article  CAS  Google Scholar 

  • Joshi SC (2011) Sol-gel behavior of hydroxypropyl methylcellulose (hpmc) in ionic media including drug release. Mater (Basel Switzerland) 4(10):1861–1905

    Article  CAS  Google Scholar 

  • Jung JT, Kim JF, Wang HH, Di Nicolo E, Drioli E, Lee YM (2016) Understanding the non-solvent induced phase separation (nips) effect during the fabrication of microporous pvdf membranes via thermally induced phase separation (tips). J Membr Sci 514:250–263

    Article  CAS  Google Scholar 

  • Kee CM, Idris A (2010) Permeability performance of different molecular weight cellulose acetate hemodialysis membrane. Sep Purif Technol 75(2):102–113

    Article  CAS  Google Scholar 

  • Khorsand-Ghayeni M, Barzin J, Zandi M, Kowsari M (2017) Fabrication of asymmetric and symmetric membranes based on pes/peg/dmac. Polym Bull 74(6):2081–2097

    Article  CAS  Google Scholar 

  • Kim I-C, Jin Y-S, Song D-H et al (2013) Preparation of ultrafiltration membrane by newly synthesized amc polymer. Desalination Water Treat 51(25–27):5196–5203

    Article  CAS  Google Scholar 

  • Kim D, Kim I-C, Kwon Y-N, Myung S (2020) Novel bio-based polymer membranes fabricated from isosorbide-incorporated poly(arylene ether)s for water treatment. Eur Polym J 136:109931

    Article  CAS  Google Scholar 

  • Kim J-H, Lee K-H (1998) Effect of peg additive on membrane formation by phase inversion. J Membr Sci 138(2):153–163

    Article  CAS  Google Scholar 

  • Kumar P, Sharma N, Ranjan R, Kumar S, Bhat ZF, Jeong DK (2013) Perspective of membrane technology in dairy industry: a review. Asian-Australas J Anim Sci 26(9):1347–1358

    Article  PubMed  PubMed Central  Google Scholar 

  • Lebleu N, Roques C, Aimar P, Causserand C (2009) Role of the cell-wall structure in the retention of bacteria by microfiltration membranes. J Membr Sci 326(1):178–185

    Article  CAS  Google Scholar 

  • Leos JZ, Zydney AL (2017) Microfiltration and ultrafiltration: principles and applications. Routledge

    Book  Google Scholar 

  • Li D, Krantz WB, Greenberg AR, Sani RL (2006) Membrane formation via thermally induced phase separation (tips): model development and validation. J Membr Sci 279(1–2):50–60

    CAS  Google Scholar 

  • Low SC, Shaimi R, Thandaithabany Y, Lim JK, Ahmad AL, Ismail A (2013) Electrophoretic interactions between nitrocellulose membranes and proteins: biointerface analysis and protein adhesion properties. Colloids Surf B 110:248–253

    Article  CAS  Google Scholar 

  • Ma Y, Shi F, Ma J, Wu M, Zhang J, Gao C (2011) Effect of peg additive on the morphology and performance of polysulfone ultrafiltration membranes. Desalination 272(1–3):51–58

    Article  CAS  Google Scholar 

  • Mallevialle J, Odendaal PE, Wiesner MR (1996) Water treatment membrane processes. American Water Works Association

  • Moriya A, Maruyama T, Ohmukai Y, Sotani T, Matsuyama H (2009) Preparation of poly(lactic acid) hollow fiber membranes via phase separation methods. J Membr Sci 342(1):307–312

    Article  CAS  Google Scholar 

  • Mülhaupt R (2013) Green polymer chemistry and bio-based plastics: dreams and reality. Macromol Chem Phys 214(2):159–174

    Article  Google Scholar 

  • Nasatto PL, Pignon F, Silveira JLM, Duarte MER, Noseda MD, Rinaudo M (2015) Methylcellulose, a cellulose derivative with original physical properties and extended applications. Polymers 7(5):777–803

    Article  CAS  Google Scholar 

  • Nassehi V, Das DB, Shigidi IMTA, Wakeman RJ (2011) Numerical analyses of bubble point tests used for membrane characterisation: model development and experimental validation. Asia-Pac J Chem Eng 6(6):850–862

    Article  CAS  Google Scholar 

  • Obotey Ezugbe E, Rathilal S (2020) Membrane technologies in wastewater treatment: a review. Membranes 10(5):89

    Article  PubMed  PubMed Central  Google Scholar 

  • Osorio FA, Molina P, Matiacevich S, Enrione J, Skurtys O (2011) Characteristics of hydroxy propyl methyl cellulose (hpmc) based edible film developed for blueberry coatings. Proc Food Sci 1:287–293

    Article  CAS  Google Scholar 

  • Pasaoglu ME, Koyuncu I (2021) Substitution of petroleum-based polymeric materials used in the electrospinning process with nanocellulose: a review and future outlook. Chemosphere 269:128710

    Article  CAS  PubMed  Google Scholar 

  • Pendergast MM, Hoek EMV (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4(6):1946–1971

    Article  CAS  Google Scholar 

  • Plisko T, Penkova A, Burts K et al (2019) Effect of pluronic f127 on porous and dense membrane structure formation via non-solvent induced and evaporation induced phase separation. J Membr Sci 580:336–349

    Article  CAS  Google Scholar 

  • Rahmawati F, Fadillah I, Mudjijono M (2017) Composite of nano-tio2 with cellulose acetate membrane from nata de coco (nano-tio2/ca(ndc)) for methyl orange degradation. J Mater Environ Sci 8:389–397

    CAS  Google Scholar 

  • Rajabzadeh S, Maruyama T, Ohmukai Y, Sotani T, Matsuyama H (2009) Preparation of pvdf/pmma blend hollow fiber membrane via thermally induced phase separation (tips) method. Sep Purif Technol 66(1):76–83

    Article  CAS  Google Scholar 

  • Rajesh S, Shobana KH, Anitharaj S, Mohan DR (2011) Preparation, morphology, performance, and hydrophilicity studies of poly(amide-imide) incorporated cellulose acetate ultrafiltration membranes. Ind Eng Chem Res 50(9):5550–5564

    Article  CAS  Google Scholar 

  • Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110(4):2448–2471

    Article  CAS  PubMed  Google Scholar 

  • Roh IJ, Ramaswamy S, Krantz WB, Greenberg AR (2010) Poly (ethylene chlorotrifluoroethylene) membrane formation via thermally induced phase separation (tips). J Membr Sci 362(1–2):211–220

    Article  CAS  Google Scholar 

  • Saber-Samandari S, Saber-Samandari S, Heydaripour S, Abdouss M (2016) Novel carboxymethyl cellulose based nanocomposite membrane: synthesis, characterization and application in water treatment. J Environ Manag 166:457–465

    Article  CAS  Google Scholar 

  • Saljoughi E, Amirilargani M, Mohammadi T (2010) Effect of peg additive and coagulation bath temperature on the morphology, permeability and thermal/chemical stability of asymmetric ca membranes. Desalination 262(1):72–78

    Article  CAS  Google Scholar 

  • Shi X, Tal G, Hankins NP, Gitis V (2014) Fouling and cleaning of ultrafiltration membranes: a review. J Water Process Eng 1:121–138

    Article  Google Scholar 

  • Song YJ, Kim JH, Kim YS et al (2018) Controlling the morphology of polyvinylidene-co-hexafluoropropylene (pvdf-co-hfp) membranes via phase inversion method. Membrane J 28(3):187–195

    Article  CAS  Google Scholar 

  • Subhi N, Verliefde AR, Chen V, Le-Clech P (2012) Assessment of physicochemical interactions in hollow fibre ultrafiltration membrane by contact angle analysis. J Membr Sci 403:32–40

    Article  Google Scholar 

  • Sun Z, Chen F (2016) Hydrophilicity and antifouling property of membrane materials from cellulose acetate/polyethersulfone in dmac. Int J Biol Macromol 91:143–150

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Liu S, Ge B, Xing L, Chen H (2007) Cellulose nitrate membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. J Membr Sci 295(1):2–10

    Article  CAS  Google Scholar 

  • Susanto H, Stahra N, Ulbricht M (2009) High performance polyethersulfone microfiltration membranes having high flux and stable hydrophilic property. J Membr Sci 342(1):153–164

    Article  CAS  Google Scholar 

  • Tabe-Mohammadi A (1999) A review of the applications of membrane separation technology in natural gas treatment. Sep Sci Technol 34(10):2095–2111

    Article  CAS  Google Scholar 

  • Tezuka Y, Imai K, Oshima M, Chiba T (1987) Determination of substituent distribution in cellulose ethers by means of a carbon-13 nmr study on their acetylated derivatives. 1. Methylcellulose. Macromolecules 20(10):2413–2418

    Article  CAS  Google Scholar 

  • Tsai HA, Kuo CY, Lin JH et al (2006) Morphology control of polysulfone hollow fiber membranes via water vapor induced phase separation. J Membr Sci 278(1):390–400

    Article  CAS  Google Scholar 

  • Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47(7):2217–2262

    Article  CAS  Google Scholar 

  • Vatanpour V, Pasaoglu ME, Barzegar H et al (2022) Cellulose acetate in fabrication of polymeric membranes: a review. Chemosphere 295:133914

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Chung T-S (2011) The evolution of physicochemical and gas transport properties of thermally rearranged polyhydroxyamide (pha). J Membr Sci 385–386:86–95

    Article  Google Scholar 

  • Wang HH, Jung JT, Kim JF, Kim S, Drioli E, Lee YM (2019) A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (nips). J Membr Sci 574:44–54

    Article  Google Scholar 

  • Wang D, Li K, Teo WK (1999) Preparation and characterization of polyvinylidene fluoride (pvdf) hollow fiber membranes. J Membr Sci 163(2):211–220

    Article  CAS  Google Scholar 

  • Wang J, Song H, Ren L, Talukder ME, Chen S, Shao J (2022) Study on the preparation of cellulose acetate separation membrane and new adjusting method of pore size. Membranes 12(1):9

    Article  CAS  Google Scholar 

  • Wang C, Wang Y, Qin H, Lin H, Chhuon K (2020) Application of microfiltration membrane technology in water treatment. IOP Conf Ser Earth Environ Sci 571(1):012158

    Article  Google Scholar 

  • Wang Y, Zhu J, Huang H, Cho H-H (2015) Carbon nanotube composite membranes for microfiltration of pharmaceuticals and personal care products: capabilities and potential mechanisms. J Membr Sci 479:165–174

    Article  CAS  Google Scholar 

  • Xiong X, Duan J, Zou W, He X, Zheng W (2010) A ph-sensitive regenerated cellulose membrane. J Membr Sci 363(1–2):96–102

    Article  CAS  Google Scholar 

  • Xu J, Li B, Lian J, Ni J, Xiao J (2016) Wetting behaviors of water droplet on rough metal substrates. In: International symposium on mechanical engineering and material science (ismems-16). Atlantis Press

  • Xu M-H, Xie R, Ju X-J, Wang W, Liu Z, Chu L-Y (2020) Antifouling membranes with bi-continuous porous structures and high fluxes prepared by vapor-induced phase separation. J Membr Sci 611:118256

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Not applicable.

Funding

This study was supported by the Development of Next-Generation Biorefinery Platform Technologies for Leading Bio-Based Chemicals Industry Project [Grant Number NRF-2022M3J5A1056072] and the Development of an Integrated Process to Produce Lignocellulosic Biomass-Derived Fermentable Sugars for Next-Generation Biorefinery Project [Grant Number NRF-2022M3J5A1056173] of the National Research Foundation supported by the Korean Ministry of Science and ICT. This study was also supported by the Korea Research Institute of Chemical Technology (KRICT, South Korea) through the core program [Grant Number KS2342-10].

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript. E-BK: Writing—original draft, methodology, visualization. M-JL: Writing—original draft, methodology, visualization. DK: Methodology, visualization. J-CL: Conceptualization, H-JL: Methodology, visualization. I-CK: Conceptualization. Y-NK: Writing—review and editing. SM: Writing—original draft, writing—review and editing, supervision.

Corresponding author

Correspondence to Suwan Myung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, EB., Lee, MJ., Kim, D. et al. Antifouling microfiltration membrane filter based on acetylated cellulose ether using vapor-induced phase separation. Cellulose 31, 479–495 (2024). https://doi.org/10.1007/s10570-023-05650-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-023-05650-6

Keywords

Navigation