Skip to main content
Log in

Cellulose nanocrystal films: effect of electrolyte and lignin addition on self-assembly, optical, and mechanical properties

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Effect of electrolytes with various sizes (CsCl, NaCl), valencies (NaCl, CaCl2, AlCl3), pH (NaCl, NaOH) on the self-assembly, optical, and mechanical properties of CNC film was studied. The cross polarized optical microscopy, UV–Vis transmission spectroscopy showed that the chiral nematic to isotropic transition concentration was dependent on the type of counterion and its interaction with the CNC rods. Notably for large size and higher valency of counterion, lower transition concentration was needed. Electrolyte concentration also influenced the CNC film transparency and pitch. At lower electrolyte concentrations CNC film retained iridescence while at higher concentrations hazy film was obtained due to CNC aggregation and electrolyte precipitation, the maximum transparency was obtained near transition concentration. At low electrolyte concentration, the CNC film pitch was higher which may be due to large effective diameter of negatively charged CNC rods, increase in electrolyte concentration reduced the pitch due to suppression of electrical double layer. Addition of electrolyte also showed improvement in the tensile strength (upto 60%) and % strain (upto 170%) of CNC film. This may be due to the presence of ionic interaction between the sulfate ester groups of CNC and positively charged counter ions of electrolyte thereby improving the stress transfer between the rods. Further, the CNC/kraft lignin (KL) based transparent, UV protection films were designed by incorporating hydrogen peroxide treated KL (PBKL) optimized for its transparency and UV blocking properties. CNC/PBKL composite films showed superior %Transparency at 550 nm and %UV blocking at 400 nm compared to CNC/4-amino benzoic acid (4-ABA), a commercial UV-absorbent and most lignin based transparent composite films reported in literature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10

Similar content being viewed by others

References

  • Araki J, Kuga S (2001) Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir 17(15):4493–4496

    Article  CAS  Google Scholar 

  • Bardet R, Belgacem N et al (2015) Flexibility and color monitoring of cellulose nanocrystal iridescent solid films using anionic or neutral polymers. ACS Appl Mater Interfaces 7(7):4010–4018

    Article  CAS  PubMed  Google Scholar 

  • Barnett C, Glasser W (1989) Bleaching of hydroxypropyl lignin with hydrogen peroxide. ACS Symposium series-American Chemical Society, Washington

    Book  Google Scholar 

  • Beck S, Bouchard J et al (2010) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromol 12(1):167–172

    Article  Google Scholar 

  • Benítez AJ, Walther A (2017) Counterion size and nature control structural and mechanical response in cellulose nanofibril nanopapers. Biomacromol 18(5):1642–1653

    Article  Google Scholar 

  • Bertsch P, Isabettini S et al (2017) Ion-induced hydrogel formation and nematic ordering of nanocrystalline cellulose suspensions. Biomacromolecules 18(12):4060–4066

    Article  CAS  PubMed  Google Scholar 

  • Bertsch P, Sánchez-Ferrer A et al (2019) Ion-induced formation of nanocrystalline cellulose colloidal glasses containing nematic domains. Langmuir 35(11):4117–4124

    Article  CAS  PubMed  Google Scholar 

  • Chau M, Sriskandha SE et al (2015) Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals. Biomacromol 16(8):2455–2462

    Article  CAS  Google Scholar 

  • Chirayil CJ, Mathew L et al (2014) Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci 37:20–8

    CAS  Google Scholar 

  • Chowdhury RA, Peng SX et al (2017) Improved order parameter (alignment) determination in cellulose nanocrystal (CNC) films by a simple optical birefringence method. Cellulose 24(5):1957–1970

    Article  CAS  Google Scholar 

  • Dai S, Prempeh N et al (2017) Cholesteric film of Cu(II)-doped cellulose nanocrystals for colorimetric sensing of ammonia gas. Carbohyd Polym 174:531–539

    Article  CAS  Google Scholar 

  • De Vries H (1951) Rotatory power and other optical properties of certain liquid crystals. Acta Crystallogr A 4(3):219–226

    Article  Google Scholar 

  • Díaz-Cruz MS, Llorca M et al (2008) Organic UV filters and their photodegradates, metabolites and disinfection by-products in the aquatic environment. TrAC Trends Anal Chem 27(10):873–887

    Article  Google Scholar 

  • Dong XM, Kimura T et al (1996) Effects of ionic strength on the isotropic—chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082

    Article  CAS  Google Scholar 

  • Du H, Parit M et al (2020) Sustainable valorization of paper mill sludge into cellulose nanofibrils and cellulose nanopaper. J Hazard Mater 400:123106

    Article  CAS  PubMed  Google Scholar 

  • Du H, Parit M et al (2021a) Engineering cellulose nanopaper with water resistant, antibacterial, and improved barrier properties by impregnation of chitosan and the followed halogenation. Carbohyd Polym 270:118372

    Article  CAS  Google Scholar 

  • Du H, Parit M et al (2021b) Multifunctional cellulose nanopaper with superior water-resistant, conductive, and antibacterial properties functionalized with chitosan and polypyrrole. ACS Appl Mater Interfaces 13(27):32115–32125

    Article  CAS  PubMed  Google Scholar 

  • Du H, Zhang M et al (2022) Conductive PEDOT: PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chem Eng J 428:131994

    Article  CAS  Google Scholar 

  • Finkelmann H, Kim ST et al (2001) Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv Mater 13(14):1069–1072

    Article  CAS  Google Scholar 

  • Gençer A, Van Rie J et al (2018) Effect of gelation on the colloidal deposition of cellulose nanocrystal films. Biomacromol 19(8):3233–3243

    Article  Google Scholar 

  • Giri J, Adhikari R (2013) A brief review on extraction of nanocellulose and its application. Bibechana 9:81–87

    Article  Google Scholar 

  • Gray DG, Mu X (2015) Chiral nematic structure of cellulose nanocrystal suspensions and films; polarized light and atomic force microscopy. Materials 8(11):7873–7888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu M, Jiang C et al (2016) Cellulose nanocrystal/poly (ethylene glycol) composite as an iridescent coating on polymer substrates: Structure-color and interface adhesion. ACS Appl Mater Interfaces 8(47):32565–32573

    Article  CAS  PubMed  Google Scholar 

  • Hambardzumyan A, Foulon L et al (2012) Natural organic UV-absorbent coatings based on cellulose and lignin: designed effects on spectroscopic properties. Biomacromol 13(12):4081–4088

    Article  CAS  Google Scholar 

  • He W, Gao W et al (2017) Oxidation of kraft lignin with hydrogen peroxide and its application as a dispersant for kaolin suspensions. ACS Sustain Chem Eng 5(11):10597–10605

    Article  CAS  Google Scholar 

  • Henrique MA, Silvério HA et al (2013) Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. J Environ Manage 121:202–209

    Article  CAS  PubMed  Google Scholar 

  • Hirai A, Inui O et al (2009) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25(1):497–502

    Article  CAS  PubMed  Google Scholar 

  • Honorato-Rios C, Kuhnhold A et al (2016) Equilibrium liquid crystal phase diagrams and detection of kinetic arrest in cellulose nanocrystal suspensions. Front Mater 3:21

    Article  Google Scholar 

  • Ikeda T, Holtman K et al (2002) Studies on the effect of ball milling on lignin structure using a modified DFRC method. J Agric Food Chem 50(1):129–135

    Article  CAS  PubMed  Google Scholar 

  • Israelachvili JN (2011) Intermolecular and surface forces. Academic press, New York

    Google Scholar 

  • Kaur R, Thakur NS et al (2020) Development of agri-biomass based lignin derived zinc oxide nanocomposites as promising UV protectant-cum-antimicrobial agents. J Mater Chem B 8(2):260–269

    Article  CAS  PubMed  Google Scholar 

  • Lagerwall JP, Schütz C et al (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6(1):e80

    Article  CAS  Google Scholar 

  • Li C, Evans J et al (2019) pH dependence of the chirality of nematic cellulose nanocrystals. Sci Rep 9(1):1–7

    Google Scholar 

  • Lin SY, Dence CW (2012) Methods in lignin chemistry. Springer, Berlin

    Google Scholar 

  • Lin SY (1980) Process for reduction of lignin color, Google Patents

  • Liu D, Chen X et al (2011) Structure and rheology of nanocrystalline cellulose. Carbohyd Polym 84(1):316–322

    Article  CAS  Google Scholar 

  • Liu D, Wang S et al (2014) Structure–color mechanism of iridescent cellulose nanocrystal films. RSC Adv 4(74):39322–39331

    Article  CAS  Google Scholar 

  • Lo Nostro P, Ninham BW (2012) Hofmeister phenomena: an update on ion specificity in biology. Chem Rev 112(4):2286–2322

    Article  CAS  PubMed  Google Scholar 

  • Lyubimova O, Stoyanov SR et al (2015) Electric interfacial layer of modified cellulose nanocrystals in aqueous electrolyte solution: predictions by the molecular theory of solvation. Langmuir 31(25):7106–7116

    Article  CAS  PubMed  Google Scholar 

  • Mehta MJ, Kumar A (2019) Ionic liquid stabilized gelatin–lignin films: a potential UV-shielding material with excellent mechanical and antimicrobial properties. Chem Eur J 25:1269–1274

    Article  CAS  PubMed  Google Scholar 

  • Nevell TP Zeronian SH (1985) Cellulose chemistry and its applications.

  • Palffy-Muhoray P, Cao W et al (2006) Photonics and lasing in liquid crystal materials. Philos Trans R Soc Lond Math Phys Eng Sci 364(1847):2747–2761

    CAS  Google Scholar 

  • Pan J, Hamad W et al (2010) Parameters affecting the chiral nematic phase of nanocrystalline cellulose films. Macromolecules 43(8):3851–3858

    Article  CAS  Google Scholar 

  • Parit M, Jiang Z (2020) Towards lignin derived thermoplastic polymers. Int J Biol Macromol 165:3180–3197

    Article  CAS  PubMed  Google Scholar 

  • Parit M, Saha P et al (2018) Transparent and homogenous cellulose nanocrystal/lignin UV-protection films. ACS Omega 3(9):10679–10691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parit M, Du H et al (2022) Flexible, transparent, UV-protecting, water-resistant nanocomposite films based on polyvinyl alcohol and Kraft lignin-grafted cellulose nanofibers. ACS Appl Polym Mater 4(5):3587–3597

    Article  CAS  Google Scholar 

  • Parit M (2021) Valorization of lignocellulosic materials-designing, synthesis, and processing of functional polymer nanocomposites.

  • Park JH, Noh J et al (2014) Macroscopic control of helix orientation in films dried from cholesteric liquid crystalline cellulose nanocrystal suspensions. Chemphyschem Euro J Chem Phys Phys Chem 15(7):1477–1484

    Article  CAS  Google Scholar 

  • Peng Y, Wang W et al (2016) Preparation of lignin–clay complexes and its effects on properties and weatherability of wood flour/polypropylene composites. Ind Eng Chem Res 55(36):9657–9666

    Article  CAS  Google Scholar 

  • Phan-Xuan T, Thuresson A et al (2016) Aggregation behavior of aqueous cellulose nanocrystals: the effect of inorganic salts. Cellulose 23(6):3653–3663

    Article  Google Scholar 

  • Prathapan R, Thapa R et al (2016) Modulating the zeta potential of cellulose nanocrystals using salts and surfactants. Colloids Surf, A 509:11–18

    Article  CAS  Google Scholar 

  • Qian Y, Deng Y et al (2014) Reaction-free lignin whitening via a self-assembly of acetylated lignin. Ind Eng Chem Res 53(24):10024–10028

    Article  CAS  Google Scholar 

  • Revol J-F, Godbout L et al (1998) Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J Pulp Pap Sci 24(5):146–149

    CAS  Google Scholar 

  • Revol J-F, Godbout DL et al (1997) Solidified liquid crystals of cellulose with optically variable properties, Google Patents.

  • Russel WB (1978) Bulk stresses due to deformation of the electrical double layer around a charged sphere. J Fluid Mech 85(4):673–683

    Article  Google Scholar 

  • Sadeghifar H, Venditti R et al (2016) Cellulose-lignin biodegradable and flexible UV protection film. ACS Sustain Chem Eng 5(1):625–631

    Article  Google Scholar 

  • Saha P (2018) Optimization of cellulose nanocrystal films for optical and micromechanical applications

  • Sarkanen KV, Ludwig CH (1971) Liguins: occurrence, formation, structure, and reactions. Wiley, London

    Google Scholar 

  • Segal L, Creely JJ et al (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  • Shafiei Sabet S (2013) Shear rheology of cellulose nanocrystal (CNC) aqueous suspensions. University of British Columbia, Vancouver

    Google Scholar 

  • Shafiei-Sabet S, Hamad W et al (2014) Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 21(5):3347–3359

    Article  CAS  Google Scholar 

  • Shimizu M, Saito T et al (2016) Water-resistant and high oxygen-barrier nanocellulose films with interfibrillar cross-linkages formed through multivalent metal ions. J Membr Sci 500:1–7

    Article  CAS  Google Scholar 

  • Silvestre C, Cimmino S (2013) Ecosustainable polymer nanomaterials for food packaging: innovative solutions, characterization needs, safety and environmental issues. CRC Press, Boca Raton

    Book  Google Scholar 

  • Sirviö JA, Ismail MY et al (2020) Transparent lignin-containing wood nanofiber films with UV-blocking, oxygen barrier, and anti-microbial properties. J Mater Chem A 8(16):7935–7946

    Article  Google Scholar 

  • Suess HU (2010) Pulp bleaching today. Walter de Gruyter, Berlin

    Book  Google Scholar 

  • Tu Y, Zhou L et al (2010) Transparent and flexible thin films of ZnO-polystyrene nanocomposite for UV-shielding applications. J Mater Chem 20(8):1594–1599

    Article  CAS  Google Scholar 

  • Vallejo JJ, Mesa M et al (2011) Evaluation of the avobenzone photostability in solvents used in cosmetic formulations. Vitae 18(1):63–71

    Article  CAS  Google Scholar 

  • Vlachy N, Jagoda-Cwiklik B et al (2009) Hofmeister series and specific interactions of charged headgroups with aqueous ions. Adv Coll Interface Sci 146(1–2):42–47

    Article  CAS  Google Scholar 

  • Vvu S, Argyropoulos D (2003) An improved method for lsolating lignin in high yield and purity. J Pulp Paper Sci 29(7):235–240

    Google Scholar 

  • Wada M, Heux L et al (2004) Polymorphism of cellulose I family: reinvestigation of cellulose IVI. Biomacromol 5(4):1385–1391

    Article  CAS  Google Scholar 

  • Wang B, Torres-Rendon JG et al (2015) Aligned bioinspired cellulose nanocrystal-based nanocomposites with synergetic mechanical properties and improved hygromechanical performance. ACS Appl Mater Interfaces 7(8):4595–4607

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Deng Y et al (2016) Reduction of lignin color via one-step UV irradiation. Green Chem 18(3):695–699

    Article  CAS  Google Scholar 

  • Wang H, Qiu X et al (2017a) A novel lignin/ZnO hybrid nanocomposite with excellent UV-absorption ability and its application in transparent polyurethane coating. Ind Eng Chem Res 56(39):11133–11141

    Article  CAS  Google Scholar 

  • Wang Y, Su J et al (2017b) A novel UV-shielding and transparent polymer film: when bioinspired dopamine–melanin hollow nanoparticles join polymers. ACS Appl Mater Interfaces 9(41):36281–36289

    Article  CAS  PubMed  Google Scholar 

  • Wierenga AM, Philipse AP et al (1997) Decay of flow birefringence in dispersions of charged colloidal rods: effect of double-layer interactions. Langmuir 13(26):6947–6950

    Article  CAS  Google Scholar 

  • Xiong F, Wu Y et al (2018) Transparent nanocomposite films of lignin nanospheres and poly (vinyl alcohol) for UV-absorbing. Ind Eng Chem Res 57(4):1207–1212

    Article  CAS  Google Scholar 

  • Yao K, Meng Q et al (2017) Flexible and responsive chiral nematic cellulose nanocrystal/poly (ethylene glycol) composite films with uniform and tunable structural color. Adv Mater 29(28):1701323

    Article  Google Scholar 

  • Yue Y (2011) A comparative study of cellulose I and II and fibers and nanocrystals. Louisiana State University, Baton Rouge

    Google Scholar 

  • Zhang H, Bai Y et al (2017) A practicable process for lignin color reduction: fractionation of lignin using methanol/water as a solvent. Green Chem 19(21):5152–5162

    Article  CAS  Google Scholar 

  • Zhong L, Fu S et al (2012) Colloidal stability of negatively charged cellulose nanocrystalline in aqueous systems. Carbohyd Polym 90(1):644–649

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support provided by Alabama Center for Paper and Bioresource Engineering.

Author information

Authors and Affiliations

Authors

Contributions

Mahesh Parit: Conceptualization, Methodology, Investigation, Formal analysis, Writing- original draft Zhihua Jiang: Conceptualization, Supervision, Writing - review & editing, Funding Acquisition

Corresponding author

Correspondence to Zhihua Jiang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3318 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parit, M., Jiang, Z. Cellulose nanocrystal films: effect of electrolyte and lignin addition on self-assembly, optical, and mechanical properties. Cellulose 30, 9405–9423 (2023). https://doi.org/10.1007/s10570-023-05464-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-023-05464-6

Keywords

Navigation