Skip to main content
Log in

Sustainable bacterial cellulose-based composite aerogels with excellent flame retardant and heat insulation

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) aerogels with ultralight, low density, and low thermal conductivity are hopeful candidates for environmentally friendly heat insulating materials. However, the application of BC in packaging and building as a heat nonconductor is seriously limited by its flammable characteristics. Hence, we report a moderate approach to fabricating a flame retardant and heat-insulating composite aerogel by introducing zinc borate (ZnB) particles into BC via an ultrasound-assistant deposition process. The in situ synthesis of ZnB particles resulted in the separation of single fibers from fiber bundles in BC instead of damaging its homogeneous porous structure, improving its thermal stability by weakening the convective intensity of heat rays. The heat release capacity of the prepared composite aerogel was only 8 J g−1 k−1, exhibiting excellent flame retardancy. The probable mechanism proposed to be that the dehydration of ZnB particles lowered the surface temperature by releasing the bound water, and simultaneously produced metallic oxides (ZnO and B2O3) for retarding the spread of heat and isolating the flammable fibrils within the combustion area. Besides above scientifical meaning on understanding the thermal insulation process, because of the natural and renewable substrate and the following simple modification process, the present approach has potential applications for industrial-scale production of green and flame retardant material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Anon (2004) Flame retardants: European union risk assessments update. Plastics Addit Compd 6:26–29

    Article  Google Scholar 

  • Bober P, Liu J, Mikkonen K, Ihalainen P, Pesonen M, Plumed-Ferrer C, Wright AV, Lindfors T, Xu CL, Latonen RM (2014) Biocomposites of nanofibrillated cellulose, polypyrrole, and silver nanoparticles with electroconductive and antimicrobial properties. Biomacromol 15(10):3655–3663

    Article  CAS  Google Scholar 

  • Cai HL, Sharma SH, Liu WY, Mu W, Liu W, Zhang XD, Deng YL (2014) Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold. Biomacromol 15(7):2540–2547

    Article  CAS  Google Scholar 

  • Chen WS, Yu HP, Li Q, Liu YX, Li J (2011) Ultralight and highly flexible aerogels with long cellulose I nanofibers. Soft Matter 7(21):10360–10368

    Article  CAS  Google Scholar 

  • Chen HB, Chiou BS, Wang YZ, Schiraldi DA (2013) Biodegradable pectin/clay aerogels. ACS Appl Mater Interfaces 5(5):1715–1721

    Article  CAS  PubMed  Google Scholar 

  • Costes L, Laoutid F, Brohez S, Dubois P (2017) Bio-based flame retardants: when nature meets fire protection. Mater Sci Eng R Rep 117:1–25

    Article  Google Scholar 

  • Fleury B, Abraham E, De Lacruz J, Chandrasekar V, Senyuk B, Liu QK, Cherpak V, Park S (2020) Aerogel from sustainably grown bacterial cellulose pellicle as thermally insulative film for building envelope. ACS Appl Mater Interfaces 12(30):34115–34121

    Article  CAS  PubMed  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  • Giesbers M, Marcelis ATM, Zuilhof H (2013) Simulation of XPS C1s spectra of organic monolayers by quantum chemical methods. Langmuir 29(15):4782–4788

    Article  CAS  PubMed  Google Scholar 

  • Gonen M, Balkose D, Gupta RB, Ulku S (2009) Supercritical carbon dioxide drying of methanol-zinc borate mixtures. Ind Eng Chem Res 48:6869–6876

    Article  CAS  Google Scholar 

  • Hale RC, La Guardia MJ, Harvey E, Gaylor MO, Mainor TM (2006) Brominated flame retardant concentrations and trends in abiotic media. Chemosphere 64:181–186

    Article  CAS  PubMed  Google Scholar 

  • Han YY, Zhang XX, Wu XD, Lu CH (2015) Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostructures. ACS Sustain Chem Eng 3(8):1853–1859

    Article  CAS  Google Scholar 

  • He CL, Huang JY, Li SH, Meng K, Zhang LY, Chen Z, Lai YK (2017) Mechanically resistant and sustainable cellulose-based composite aerogels with excellent flame retardant, sound-absorption, and superantiwetting ability for advanced engineering materials. ACS Sustain Chem Eng 6(1):927–936

    Article  Google Scholar 

  • He C, Huang J, Li S, Meng K, Zhang L, Chen Z, Lai Y (2018) Mechanically resistant and sustainable cellulose-based composite aerogels with excellent flame retardant, sound-absorption, and superantiwetting ability for advanced engineering materials. ACS Sustain Chem Eng 6:927–936

    Article  CAS  Google Scholar 

  • Jaramillo-Paez CA, Navio JA, Hidalgo MC, Macias M (2018) ZnO and Pt-ZnO photocatalysts: characterization and photocatalytic activity assessing by means of three substrates. Catal Today 313:12–19

    Article  CAS  Google Scholar 

  • Jones RJ, Srubar III WV (2022) Biomineralization of symbiotic cultures of bacteria and yeast (SCOBY) cellulose aerogels. Adv Eng Mater 24(12):2200681

    Article  CAS  Google Scholar 

  • Joni IM, Nishiwaki T, Okuyama K, Isoi S, Kuribayashi R (2010) Enhancement of the thermal stability and mechanical properties of a PMMA/aluminum trihydroxide composite synthesized via bead milling. Powder Technol 204(1):145–153

    Article  CAS  Google Scholar 

  • Khalili P, Liu XL, Tshai KY, Rudd C, Yi XS, Kong I (2019) Development of fire retardancy of natural fiber composite encouraged by a synergy between zinc borate and ammonium polyphosphate. Compos B Eng 159:165–172

    Article  CAS  Google Scholar 

  • Köklükaya O, Carosio F, Wågberg L (2017) Superior flame-resistant cellulose nanofibril aerogels modified with hybrid layer-by-layer coatings. ACS Appl Mater Interfaces 9:29082–29092

    Article  PubMed  Google Scholar 

  • Li Y, Wang B, Sui X, Xu H, Zhang L, Zhong Y, Mao Z (2017) Facile synthesis of microfibrillated cellulose/organosilicon/poly-dopamine composite sponges with flame retardant properties. Cellulose 24:3815–3823

    Article  CAS  Google Scholar 

  • Li YM, Deng C, Shi XH, Xu BR, Chen H, Wang YZ (2019) Simultaneously improved flame retardance and ceramifiable properties of polymer-based composites via the formed crystalline phase at high temperature. ACS Appl Mater Interfaces 11(7):7459–7471

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang Q (2009) The investigation on the flame retardancy mechanism of nitrogen flame retardant melamine cyanurate in polyamide 6. J Polym Res 16(5):583–589

    Article  CAS  Google Scholar 

  • Liu T, Liang FW, Chen S, Zhang P, Qian K, Xu Y, Guo WW (2022) Aramid reinforced polyimide aerogel composites with high-mechanical strength for thermal insulation material. Polym Adv Technol 2023:1–8

    Google Scholar 

  • Lowe SE, Zhong YL (2016) Challenges of industrial-scale graphene oxide production. In: Dimiev AM, Eigler S (eds) Graphene oxide: fundamentals and applications. Wiley, West Sussex, pp 410–431

    Chapter  Google Scholar 

  • Lv QT, Yang JF, Sun X, Tang H, Wang LX (2022) Preparation of highly efficient thermal insulating halloysite nanotubes/polyvinyl alcohol composite aerogel based on a simple freeze-drying strategy. Polym Compos 2022:1–10

    Google Scholar 

  • Nakashima H (1994) Time Course of Effects of Tetraethoxysilane (TEOS) on the Kidney and Blood Silicon Concentration in Mice. Arch Toxicol 69:59–64

    Article  CAS  PubMed  Google Scholar 

  • Nakashima H, Omae K, Sakai T, Yamazaki K, Sakurai H (1994) Acute and subchronic inhalation toxicity of tetraethoxysilane (TEOS) in mice. Arch Toxicol 68:277–283

    Article  CAS  PubMed  Google Scholar 

  • Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1325–1341

    Article  CAS  Google Scholar 

  • Nguyen TTV, Tri N, Tran BA, Duy TD, Nguyen ST, Nguyen TA, Phan AN, Thanh PM, Huynh HK (2021) Synthesis, characteristics, oil adsorption, and thermal insulation performance of cellulosic aerogel derived from water hyacinth. ACS Omega 6:26130–26139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Liu LX, Wang X, Song L, Hu Y (2018) Hypophosphorous acid cross-linked layer-by-layer assembly of green polyelectrolytes on polyester-cotton blend fabrics for durable flame-retardant treatment. Carbohydr Polym 201:1–8

    Article  CAS  PubMed  Google Scholar 

  • Qian G, Wu B, Qin Z, Li X, Zheng ZZ, Xia R, Qian JS (2022) Enhanced thermal conductivity via in situ constructed CNT aerogel structure in composites. Adv Mater Interfaces 9(12):2102098

    Article  CAS  Google Scholar 

  • Shen KK, Kochesfahani S, Jouffret F (2008) Zinc borates as multifunctional polymer additives. Polym Adv Technol 19:469–474

    Article  CAS  Google Scholar 

  • Viggiano RP, Williams JC, Schiraldi DA, Meador MAB (2017) Effect of bulky substituents in the polymer backbone on the properties of polyimide aerogels. ACS Appl Mater 9(9):8287–8296

    Article  CAS  Google Scholar 

  • Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, Bergstrom L (2015) Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol 10(3):277–283

    Article  CAS  PubMed  Google Scholar 

  • Xu CL, Wei ZH, Gao HJ, Bai YJ, Liu HL, Yang HL, Lai YK, Yang L (2017) Bioinspired mechano-sensitive macroporous ceramic sponge for logical drug and cell delivery. Adv Sci 4(6):1600410

    Article  Google Scholar 

  • Yan MY, Pan YL, Cheng XD, Zhang ZX, Deng YR, Lun ZY, Gong LL, Gao MY, Zhang HP (2021) “Robust−Soft” anisotropic nanofibrillated cellulose aerogels with superior mechanical, flame-retardant, and thermal insulating properties. ACS Appl Mater Interfaces 13:27458–27470

    Article  CAS  PubMed  Google Scholar 

  • Yu RM, Shi YZ, Yang DZ, Liu YX, Qu J, Yu ZZ (2017) Graphene oxide/chitosan aerogel microspheres with honeycomb-cobweb and radially oriented microchannel structures for broad-spectrum and rapid adsorption of water contaminants. ACS Appl Mater Interfaces 9(26):21809–21819

    Article  CAS  PubMed  Google Scholar 

  • Yuan B, Zhang J, Mi Q, Yu J, Song R, Zhang J (2017) Transparent cellulose−silica composite aerogels with excellent flame retardancy via an in situ sol−gel process. ACS Sustain Chem Eng 5:11117–11123

    Article  CAS  Google Scholar 

  • Zhang J, Cao YW, Feng JC, Wu PY (2012) Graphene-oxide-sheet-induced gelation of cellulose and promoted mechanical properties of composite aerogels. J Phys Chem C 116:8063–8068

    Article  CAS  Google Scholar 

  • Zhao CQ, Chen F, Dong SS, Liu XY, Qi HM, Deng SF (2022) Silicon-containing polyarylacetylene aerogel with heat resistance and ablative property for high-temperature insulation. J Appl Polym Sci 135(15):e52385

    Article  Google Scholar 

  • Zhu LT, Zong L, Wu XC, Li MJ, Wang HS, You J, Li CX (2018) Shapeable fibrous aerogels of metal-organic-frameworks templated with nanocellulose for rapid and Large-Capacity Adsorption. ACS Nano 12(5):4462–4468

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the grants from the Guangxi Key Laboratory of Chemistry Engineering of Forest Products (GXFK2306) and National Natural Science Foundation of China (No. 31770622). We also thank Diana Hembree for the valuable suggestion and edition during the preparation of this paper.

Author information

Authors and Affiliations

Authors

Contributions

ZXW: Investigation, Data curation, Formal analysis, Writing. YYE: Writing—review & editing. JL: Data curation, Formal analysis. TTD: Writing—review & editing. KW: Conceptualization, Project administration, Writing—review & editing, Funding acquisition. XY: Writing—review & editing. JXJ: Formal analysis, Supervision. MW: Writing—review & editing. SGY: Writing—review & editing

Corresponding authors

Correspondence to Kun Wang or Xi Yao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval and consent to participate

Not applicable.

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2410 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., E, Y., Li, J. et al. Sustainable bacterial cellulose-based composite aerogels with excellent flame retardant and heat insulation. Cellulose 30, 9563–9574 (2023). https://doi.org/10.1007/s10570-023-05461-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-023-05461-9

Keywords

Navigation