Skip to main content
Log in

Cellulose-based fibrous materials for self-powered wearable pressure sensor: a mini review

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

With the rapid development in wearable pressure sensors, self-powered pressure sensor based on piezoelectric and triboelectric effect have recently attracted great attention to overcome the limitation of conventional hard power sources. In consideration of sustainable development, environmentally friendly and biosafety, cellulose fibrous materials with good biocompatibility and biodegradability are becoming a promising versatile platform for designing and manufacturing self-powered pressure sensor. However, poor hydrophobicity, weak polarity, and insufficient functionalization on cellulose surface partly restricts the development of highly sensitive sensors to a certain extent. Much work is devoted to solving these problems. This minireview provides an overview of cellulose fibrous materials based piezoelectric and triboelectric self-powered pressure sensor. Following a brief introduction to the significance of the cellulose fibrous materials based self-powered pressure sensor, the self-powered sensing mechanism and cellulose based fibrous piezoelectric and triboelectric material for self-powered pressure sensor have been highlighted, including fabrication methods, sensing performance, and its applications. Furthermore, the challenges and future prospects of the cellulose fibrous materials based self-powered pressure sensors are also discussed. Finally, given that some advanced cellulose fibrous piezoelectric and triboelectric sensing materials exist for detecting external pressure, it is believed that these materials will make a significant contribution in intelligent wearable sensing field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Aaryashree, Sahoo S, Walke P, Nayak SK, Rout CS, Late DJ (2021) Recent developments in self-powered smart chemical sensors for wearable electronics. Nano Res 14:3669–3689

    Article  Google Scholar 

  • Annamalai PK, Nanjundan AK, Dubal DP, Baek JB (2021) An overview of cellulose-based nanogenerators. Adv Mater Technol 6:2001164

    Article  CAS  Google Scholar 

  • Azimi B, Milazzo M, Lazzeri A, Berrettini S, Uddin MJ, Qin Z, Buehler MJ, Danti S (2020) Electrospinning piezoelectric fibers for biocompatible devices. Adv Healthc Mater 9:e1901287

    Article  PubMed  Google Scholar 

  • Bairagi S, Ghosh S, Ali SW (2020) A fully sustainable, self-poled, bio-waste based piezoelectric nanogenerator: electricity generation from pomelo fruit membrane. Sci Rep 10:12121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bethke K, Palantöken S, Andrei V, Roß M, Raghuwanshi VS, Kettemann F, Greis K, Ingber TTK, Stückrath JB, Valiyaveettil S, Rademann K (2018) Functionalized cellulose for water purification, antimicrobial applications, and sensors. Adv Funct Mater 28:1800409

    Article  Google Scholar 

  • Cao X, Xiong Y, Sun J, Zhu X, Sun Q, Wang ZL (2021) Piezoelectric nanogenerators derived self-powered sensors for multifunctional applications and artificial intelligence. Adv Funct Mater 31:2102983

    Article  CAS  Google Scholar 

  • Chen S, Jiang J, Xu F, Gong S (2019) Crepe cellulose paper and nitrocellulose membrane-based triboelectric nanogenerators for energy harvesting and self-powered human–machine interaction. Nano Energy 61:69–77

    Article  CAS  Google Scholar 

  • Chen C, Zhao S, Pan C, Zi Y, Wang F, Yang C, Wang ZL (2022) A method for quantitatively separating the piezoelectric component from the as-received “Piezoelectric” signal. Nat Commun 13:1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi S, Lee H, Ghaffari R, Hyeon T, Kim DH (2016) Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 28:4203–4218

    Article  CAS  PubMed  Google Scholar 

  • Csoka L, Hoeger IC, Rojas OJ, Peszlen I, Pawlak JJ, Peralta PN (2012) Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Lett 1:867–870

    Article  CAS  PubMed  Google Scholar 

  • Dan L, Shi S, Chung H-J, Elias A (2019) Porous polydimethylsiloxane–silver nanowire devices for wearable pressure sensors. ACS Appl Nano Mater 2:4869–4878

    Article  CAS  Google Scholar 

  • Diaz AF, Felix-Navarro RM (2004) A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J Electrostat 62:277–290

    Article  CAS  Google Scholar 

  • Fan F-R, Tian Z-Q, Wang L, Z (2012) Flexible triboelectric generator. Nano Energy 1:328–334

    Article  CAS  Google Scholar 

  • Fan J, Zhang S, Li F, Yang Y, Du M (2020) Recent advances in cellulose-based membranes for their sensing applications. Cellulose (Lond) 27:9157–9179

    Article  CAS  PubMed  Google Scholar 

  • Fu R, Chen S, Lin Y, Zhang S, Jiang J, Li Q, Gu Y (2017) Improved piezoelectric properties of electrospun poly(vinylidene fluoride) fibers blended with cellulose nanocrystals. Mater Lett 187:86–88

    Article  CAS  Google Scholar 

  • Guan Y, Bai M, Li Q, Li W, Liu G, Liu C, Chen Y, Lin Y, Hui Y, Wei R (2022) A plantar wearable pressure sensor based on hybrid lead zirconate-titanate/microfibrillated cellulose piezoelectric composite films for human health monitoring. Lab Chip 22:2376–2391

    Article  CAS  PubMed  Google Scholar 

  • Hong C-H, Ki S-J, Jeon J-H, Che H-l, Park I-K, Kee C-D, Oh I-K (2013) Electroactive bio-composite actuators based on cellulose acetate nanofibers with specially chopped polyaniline nanoparticles through electrospinning. Compos Sci Technol 87:135–141

    Article  CAS  Google Scholar 

  • Hosseini ES, Manjakkal L, Shakthivel D, Dahiya R (2020) Glycine-chitosan-based flexible biodegradable piezoelectric pressure sensor. ACS Appl Mater Interfaces 12:9008–9016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Hao Y, Zhao M, Li W, Huang F, Wei Q (2021) All-fiber-structured triboelectric nanogenerator via one-pot electrospinning for self-powered wearable sensors. ACS Appl Mater Interfaces 13:24774–24784

    Article  CAS  PubMed  Google Scholar 

  • Huo Z, Wei Y, Wang Y, Wang ZL, Sun Q (2022) Integrated self-powered sensors based on 2D material devices. Adv Funct Mater 32:2206900

    Article  CAS  Google Scholar 

  • Kim J, Chou EF, Le J, Wong S, Chu M, Khine M (2019) Soft wearable pressure sensors for beat-to-beat blood pressure monitoring. Adv Healthc Mater 8:e1900109

    Article  PubMed  Google Scholar 

  • Lai YC, Wu HM, Lin HC, Chang CL, Chou HH, Hsiao YC, Wu YC (2019) Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self‐powered electronic skins. Adv Funct Mater 29:1904626

    Article  Google Scholar 

  • Lee E, Yoo H (2021) Self-powered sensors: new opportunities and challenges from two-dimensional nanomaterials. Molecules 26:5056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Kwon H, Seo J, Shin S, Koo JH, Pang C, Son S, Kim JH, Jang YH, Kim DE, Lee T (2015) Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater 27:2433–2439

    Article  CAS  PubMed  Google Scholar 

  • Lei D, Liu N, Su T, Wang L, Su J, Zhang Z, Gao Y (2020) Research progress of MXenes-based wearable pressure sensors. APL Mater 8:110702

    Article  CAS  Google Scholar 

  • Lei H, Chen Y, Gao Z, Wen Z, Sun X (2021) Advances in self-powered triboelectric pressure sensors. J Mater Chem A 9:20100–20130

    Article  CAS  Google Scholar 

  • Li Z, Zhu M, Qiu Q, Yu J, Ding B (2018) Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting. Nano Energy 53:726–733

    Article  CAS  Google Scholar 

  • Li J, Chen S, Liu W, Fu R, Tu S, Zhao Y, Dong L, Yan B, Gu Y (2019a) High performance piezoelectric nanogenerators based on electrospun ZnO nanorods/poly(vinylidene fluoride) composite membranes. J Phys Chem C 123:11378–11387

    Article  CAS  Google Scholar 

  • Li M, Jie Y, Shao L-H, Guo Y, Cao X, Wang N, Wang ZL (2019b) All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator. Nano Res 12:1831–1835

    Article  CAS  Google Scholar 

  • Li W, Yang T, Liu C, Huang Y, Chen C, Pan H, Xie G, Tai H, Jiang Y, Wu Y, Kang Z, Chen L, Su Y, Hong Z (2022) Optimizing piezoelectric nanocomposites by high-throughput phase-field simulation and machine learning. Adv Sci 9:2105550

    Article  CAS  Google Scholar 

  • Lin X, Xue H, Li F, Mei H, Zhao H, Zhang T (2022) All-nanofibrous ionic capacitive pressure sensor for wearable applications. ACS Appl Mater Interfaces 14:31385–31395

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Libanori A, Zhou Y, Xiao X, Xie G, Zhao X, Su Y, Wang S, Zhen Y, Duan Z, Liang J, Jiang Y, Tai H, Chen J (2022a) Simultaneous biomechanical and biochemical monitoring for self-powered breath analysis. ACS Appl Mater Interfaces 14:7301–7310

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Liu K, Du H, Zheng T, Zhang N, Xu T, Pang B, Zhang X, Si C, Zhang K (2022b) Cellulose nanopaper: fabrication, functionalization, and applications. Nanomicro Lett 14:104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Losic D, Mitchell JG, Voelcker NH (2009) Diatomaceous lessons in nanotechnology and advanced materials. Adv Mater 21:2947–2958

    Article  CAS  Google Scholar 

  • Lou M, Abdalla I, Zhu M, Yu J, Li Z, Ding B (2020) Hierarchically rough structured and self-powered pressure sensor textile for motion sensing and pulse monitoring. ACS Appl Mater Interfaces 12:1597–1605

    Article  CAS  PubMed  Google Scholar 

  • Mahadeva SK, Walus K, Stoeber B (2014) Piezoelectric paper fabricated via nanostructured barium titanate functionalization of wood cellulose fibers. ACS Appl Mater Interfaces 6:7547–7553

    Article  CAS  PubMed  Google Scholar 

  • McCarty LS, Whitesides GM (2008) Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew Chem Int Ed Engl 47:2188–2207

    Article  CAS  PubMed  Google Scholar 

  • Meng K, Xiao X, Liu Z, Shen S, Tat T, Wang Z, Lu C, Ding W, He X, Yang J, Chen J (2022a) Kirigami-inspired pressure sensors for wearable dynamic cardiovascular monitoring. Adv Mater e2202478

  • Meng K, Xiao X, Wei W, Chen G, Nashalian A, Shen S, Xiao X, Chen J (2022b) Wearable pressure sensors for pulse wave monitoring. Adv Mater 34:e2109357

    Article  PubMed  Google Scholar 

  • Mishra S, Unnikrishnan L, Nayak SK, Mohanty S (2019) Advances in piezoelectric polymer composites for energy harvesting applications: a systematic review. Macromol Mater Eng 304:1800463

    Article  Google Scholar 

  • Miyashiro D, Hamano R, Umemura K (2020) A review of applications using mixed materials of cellulose, nanocellulose and carbon nanotubes. Nanomaterials 10:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mo X, Zhou H, Li W, Xu Z, Duan J, Huang L, Hu B, Zhou J (2019) Piezoelectrets for wearable energy harvesters and sensors. Nano Energy 65:104033

    Article  CAS  Google Scholar 

  • Nie S, Hao N, Zhang K, Xing C, Wang S (2020) Cellulose nanofibrils-based thermally conductive composites for flexible electronics: a mini review. Cellulose 27:4173–4187

    Article  CAS  Google Scholar 

  • Nie S, Fu Q, Lin X, Zhang C, Lu Y, Wang S (2021) Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity. Chem Eng J 404:126512

    Article  CAS  Google Scholar 

  • Niu Z, Cheng W, Cao M, Wang D, Wang Q, Han J, Long Y, Han G (2021) Recent advances in cellulose-based flexible triboelectric nanogenerators. Nano Energy 87:106175

    Article  CAS  Google Scholar 

  • Pan H, Lee TW (2021) Recent progress in development of wearable pressure sensors derived from Biological materials. Adv Healthc Mater 10:e2100460

    Article  PubMed  Google Scholar 

  • Pan R, Xuan W, Chen J, Dong S, Jin H, Wang X, Li H, Luo J (2018) Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films. Nano Energy 45:193–202

    Article  CAS  Google Scholar 

  • Parandeh S, Kharaziha M, Karimzadeh F (2019) An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper. Nano Energy 59:412–421

    Article  CAS  Google Scholar 

  • Peng Z, Zheng S, Zhang X, Yang J, Wu S, Ding C, Lei L, Chen L, Feng G (2022) Flexible wearable pressure sensor based on collagen fiber material. Micromachines 13:694

    Article  PubMed  PubMed Central  Google Scholar 

  • Ponnamma D, Parangusan H, Tanvir A, AlMa’adeed MAA (2019) Smart and robust electrospun fabrics of piezoelectric polymer nanocomposite for self-powering electronic textiles. Mater Design 184:108176

    Article  CAS  Google Scholar 

  • Rajabi-Abhari A, Kim JN, Lee J, Tabassian R, Mahato M, Youn HJ, Lee H, Oh IK (2021) Diatom bio-silica and cellulose nanofibril for bio-triboelectric nanogenerators and self-powered breath monitoring masks. ACS Appl Mater Interfaces 13:219–232

    Article  CAS  PubMed  Google Scholar 

  • Rajala S, Siponkoski T, Sarlin E, Mettanen M, Vuoriluoto M, Pammo A, Juuti J, Rojas OJ, Franssila S, Tuukkanen S (2016) Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl Mater Interfaces 8:15607–15614

    Article  CAS  PubMed  Google Scholar 

  • Rol F, Belgacem MN, Gandini A, Bras J (2019) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci 88:241–264

    Article  CAS  Google Scholar 

  • Scheffler S, Poulin P (2022) Piezoelectric fibers: processing and challenges. ACS Appl Mater Interfaces 14:16961–16982

    Article  CAS  PubMed  Google Scholar 

  • Sheng Z, Qiuxiao Z, Tingting W, Xuchong W, Xiaoping S, Yuhe W, Lianxin L (2022) Contact electrification property controlled by amino modification of cellulose fibers. Cellulose 29:3195–3208

    Article  CAS  Google Scholar 

  • Su Y, Li W, Li Y, Chen C, Pan H, Xie G, Conta G, Ferrier S, Zhao X, Chen G, Tai H, Jiang Y, Chen J (2021) Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy 33:2101262

    CAS  Google Scholar 

  • Su Y, Li W, Cheng X, Zhou Y, Yang S, Zhang X, Chen C, Yang T, Pan H, Xie G, Chen G, Zhao X, Xiao X, Li B, Tai H, Jiang Y, Chen L, Li F, Chen J (2022) High performance piezoelectric composites via β phase programming. Nat Commun 13:4867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun B, Chao D, Wang C (2021) Piezoelectric nanogenerator based on electrospun cellulose acetate/nanocellulose crystal composite membranes for energy harvesting application. Chem Res Chin Univ 38:1005–1011

    Article  Google Scholar 

  • Tan C, Dong Z, Li Y, Zhao H, Huang X, Zhou Z, Jiang JW, Long YZ, Jiang P, Zhang TY, Sun B (2020) A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat Commun 11:3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Y, Yang K, Wang B, Li H, Wang L, Wang C (2021) High-performance textile piezoelectric pressure sensor with novel structural hierarchy based on ZnO nanorods array for wearable application. Nano Res 14:3969–3976

    Article  CAS  Google Scholar 

  • Ullrich J, Eisenreich M, Zimmermann Y, Mayer D, Koehne N, Tschannett JF, Mahmud-Ali A, Bechtold T (2020) Piezo-sensitive fabrics from carbon black containing conductive cellulose fibres for flexible pressure sensors. Materials 13:5150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ummartyotin S, Manuspiya H (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Renew Sustain Energy Rev 41:402–412

    Article  CAS  Google Scholar 

  • Veeralingam S, Bharti DK, Badhulika S (2022) Lead-free PDMS/PPy based low-cost wearable piezoelectric nanogenerator for self-powered pulse pressure sensor application. Mater Res Bull 151:111815

    Article  CAS  Google Scholar 

  • Wang X, Yu J, Cui Y, Li W (2021a) Research progress of flexible wearable pressure sensors. Sens Actuators A Phys 330:112838

    Article  CAS  Google Scholar 

  • Wang Z, Lee YH, Kim SW, Seo JY, Lee SY, Nyholm L (2021b) Why cellulose-based electrochemical energy storage devices? Adv Mater 33:e2000892

    Article  PubMed  Google Scholar 

  • Wang L, Cheng T, Lian W, Zhang M, Lu B, Dong B, Tan K, Liu C, Shen C (2022) Flexible layered cotton cellulose-based nanofibrous membranes for piezoelectric energy harvesting and self-powered sensing. Carbohydr Polym 275:118740

    Article  CAS  PubMed  Google Scholar 

  • Wei Q, Chen G, Pan H, Ye Z, Au C, Chen C, Zhao X, Zhou Y, Xiao X, Tai H, Jiang Y, Xie G, Su Y, Chen J (2021) MXene-Sponge based high-performance piezoresistive sensor for wearable biomonitoring and real-time tactile sensing. Small Methods 6:2101051

    Article  Google Scholar 

  • Wu Z, Cheng T, Wang ZL (2020) Self-powered sensors and systems based on nanogenerators. Sensors 20:2925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia K, Zhu Z, Zhang H, Du C, Xu Z, Wang R (2018) Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion. Nano Energy 50:571–580

    Article  CAS  Google Scholar 

  • Xu G, Leng G, Yang C, Qin Y, Wu Y, Chen H, Cong L, Ding Y (2017) Sodium nitrate–diatomite composite materials for thermal energy storage. Sol Energy 146:494–502

    Article  CAS  Google Scholar 

  • Ye L, Chen L, Yu J, Tu S, Yan B, Zhao Y, Bai X, Gu Y, Chen S (2021) High-performance piezoelectric nanogenerator based on electrospun ZnO nanorods/P(VDF-TrFE) composite membranes for energy harvesting application. J Mater Sci Mater Electron 32:3966–3978

    CAS  Google Scholar 

  • Yi Z, Liu Z, Li W, Ruan T, Chen X, Liu J, Yang B, Zhang W (2022) Piezoelectric dynamics of arterial pulse for wearable continuous blood pressure monitoring. Adv Mater 34:e2110291

    Article  PubMed  Google Scholar 

  • Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26:5310–5336

    Article  CAS  PubMed  Google Scholar 

  • Zhang X-S, Su M, Brugger J, Kim B (2017) Penciling a triboelectric nanogenerator on paper for autonomous power MEMS applications. Nano Energy 33:393–401

    Article  CAS  Google Scholar 

  • Zhang G, Liao Q, Ma M, Gao F, Zhang Z, Kang Z, Zhang Y (2018) Uniformly assembled vanadium doped ZnO microflowers/bacterial cellulose hybrid paper for flexible piezoelectric nanogenerators and self-powered sensors. Nano Energy 52:501–509

    Article  CAS  Google Scholar 

  • Zhang C, Lin X, Zhang N, Lu Y, Wu Z, Liu G, Nie S (2019) Chemically functionalized cellulose nanofibrils-based gear-like triboelectric nanogenerator for energy harvesting and sensing. Nano Energy 66:104126

    Article  CAS  Google Scholar 

  • Zhang C, Mo J, Fu Q, Liu Y, Wang S, Nie S (2021a) Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators. Nano Energy 81:105637

    Article  CAS  Google Scholar 

  • Zhang J, Hu S, Shi Z, Wang Y, Lei Y, Han J, Xiong Y, Sun J, Zheng L, Sun Q, Yang G, Wang ZL (2021b) Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface. Nano Energy 89:106354

    Article  CAS  Google Scholar 

  • Zhang M, Du H, Liu K, Nie S, Xu T, Zhang X, Si C (2021c) Fabrication and applications of cellulose-based nanogenerators. Adv Compos Hybrid Mater 4:865–884

    Article  CAS  Google Scholar 

  • Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H (2021) Cellulose-based flexible functional materials for emerging Intelligent electronics. Adv Mater 33:e2000619

    Article  PubMed  Google Scholar 

  • Zhao C, Wang Y, Tang G, Ru J, Zhu Z, Li B, Guo CF, Li L, Zhu D (2022a) Ionic flexible sensors: mechanisms, materials, structures, and applications. Adv Funct Mater 32:2110417

    Article  CAS  Google Scholar 

  • Zhao T, Fu Y, Sun C, Zhao X, Jiao C, Du A, Wang Q, Mao Y, Liu B (2022b) Wearable biosensors for real-time sweat analysis and body motion capture based on stretchable fiber-based triboelectric nanogenerators. Biosens Bioelectron 205:114115

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Zhang Y, Qiu Y, Wu H, Qin W, Liao Y, Yu Q, Cheng H (2020) Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices. Biosens Bioelectron 168:112569

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Lou M, Abdalla I, Yu J, Li Z, Ding B (2020a) Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing. Nano Energy 69:104429

    Article  CAS  Google Scholar 

  • Zhu M, Lou M, Yu J, Li Z, Ding B (2020b) Energy autonomous hybrid electronic skin with multi-modal sensing capabilities. Nano Energy 78:105208

    Article  CAS  Google Scholar 

  • Zhu M, Wang Y, Lou M, Yu J, Li Z, Ding B (2021) Bioinspired transparent and antibacterial electronic skin for sensitive tactile sensing. Nano Energy 81:105669

    Article  CAS  Google Scholar 

  • Zhu M, Li J, Yu J, Li Z, Ding B (2022a) Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angew Chem Int Ed Engl 61:e202200226

    CAS  PubMed  Google Scholar 

  • Zhu M, Yu J, Li Z, Ding B (2022b) Self-healing fibrous membranes. Angew Chem Int Ed Engl 61:e202208949

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to acknowledge Nanjing Forestry University for the facilities throughout the preparation of the review article.

Funding

This work is financially supported by the National Natural Science Foundation of China (52203059, 22275094, 22275093).

Author information

Authors and Affiliations

Authors

Contributions

MZ and CH prepared Figures and wrote the main manuscript text. JZ, WX and RX prepared Figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Chaobo Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Zhang, J., Xu, W. et al. Cellulose-based fibrous materials for self-powered wearable pressure sensor: a mini review. Cellulose 30, 1981–1998 (2023). https://doi.org/10.1007/s10570-022-05023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-022-05023-5

Keywords

Navigation