Skip to main content
Log in

Fabrication of C6-Fluorocarbon-dendrimer-based superhydrophobic cotton fabrics for multifunctional aspects

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

C6-Fluorocarbon-dendrimer has been applied to the cotton knit fabric to develop oil–water repellent, oil–water separation, acid-resistant, self-cleaning, UV-resistant, and antibacterial properties. The C6-Fluorocarbon (FC)-dendrimer-coated 100% cotton single jersey knitted fabric samples were prepared using the “pad-dry-cure” method. The 90 g/L and 100 g/L FC-dendrimer-treated cotton fabrics showed excellent water repellency and oil–water separation as well as good self-cleaning performance. However, air permeability and heat conductivity were reduced by 13%, 15%, and 40%, 54%, for 90 g/L and 100 g/L FC-dendrimer-treated cotton fabrics compared to untreated fabrics. The presence of FC-dendrimer in the treated fabric was confirmed by FTIR, SEM, EDX, and XRD analyses. SEM analysis was employed to study the morphology of deposited FC-dendrimer particles on the fabric surface. TGA and DTA evaluated thermal performance. The FC-dendrimer-treated fabric also showed acid resistance, self-cleaning performance, and UV resistance attribute. In addition, Bacterial population growth appears to be less in the FC-dendrimer-treated sample than in the untreated sample. Overall, the result suggests that FC-dendrimer can be a valuable ingredient in the manufacture of multifunctional products.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • AATCC Test Method 124-2018t (2018) Smoothness appearance of fabrics after repeated home laundering. AATCC technical manual, Research Triangle Park, NC 27709, USA, pp 195–198

  • AATCC Test Method 127-2008 (2009) Water resistance: hydrostatic pressure test. AATCC technical manual, Research Triangle Park, NC 27709, USA, pp 201–202

  • AATCC Test Method TM 22-2005 (2009) Water repellency: spray test. AATCC technical manual, Research Triangle Park, NC 27709, USA, pp 67–69

  • AATCC Test Method: TM 147-2004 (2010) Determination of zone of inhibition by qualitative method. AATCC technical manual, Research Triangle Park, NC 27709, USA, 85 (2010), pp 251–252

  • AATCC Test Method: TM 183-2004 (2010) Transmittance or blocking of erythemally weighted ultraviolet radiation through fabric, in: AATCC technical manual. AATCC technical manual. Research Triangle Park, NC 27709, USA, pp 318–319

  • Abo-Shosha MH, El-Hilw ZH, Aly AA, Amr A, Nagdy ASIE (2008) Paraffin wax emulsion as water repellent for cotton/polyester blended fabric. J Ind Text 37(4):315–325

    Article  CAS  Google Scholar 

  • Ajgaonkar DB (1998) Knitting technology. Universal Publishing Corporation, Bombay, pp 2–3

    Google Scholar 

  • Akbari S, Kozłowski RM (2019) A review of application of amine-terminated dendritic materials in textile engineering. J Text Inst 110(3):460–467

    Article  CAS  Google Scholar 

  • Altınışık A, Bozacı E, Akar E, Seki Y, Yurdakoc K, Demir A, Özdogan E (2013) Development of antimicrobial cotton fabric using bionanocomposites. Cellulose 20:3111–3121

    Article  Google Scholar 

  • ASTM D4966-98 (1989) Standard test method for abrasion resistance of textile fabrics (Martindale Abrasion tester method). ASTM International, West Conshohocken

  • ASTM D 3786-87 (1987) Test method for hydraulic or pneumatic bursting strength of textile fabrics-diaphragm bursting strength tester method. American Society for Testing Materials, West Conshohocken

  • ASTM D3776-96 (2002) Standard test methods for mass per unit area (weight) of fabric. ASTM International, West Conshohocken

  • Atav R, Bariş B (2016) Dendrimer technology for water and oil repellent cotton textiles. AATCC J Res 3(2):16–24

    Article  CAS  Google Scholar 

  • Attia NF, Moussa M, Sheta AM, Taha R, Gamal H (2017) Synthesis of effective multifunctional textile based on silica nanoparticles. Prog Org Coat 106:41–49

    Article  CAS  Google Scholar 

  • Baig U, Matin A, Gondal MA, Zubair SM (2019) Facile fabrication of superhydrophobic, superoleophilic photocatalytic membrane for efficient oil-water separation and removal of hazardous organic pollutants. J Clean Prod 208:904–915

    Article  CAS  Google Scholar 

  • Behera BK, Hari PK (2010) Woven textile structure: theory and applications. Elsevier, Amsterdam, pp 3–30

    Book  Google Scholar 

  • Beumer R, Bloomfield S, Exner M, Fara G, Nath K, Scott E (2000) Microbial resistance and biocides: a review. International Forum on Home Hygiene (IFH). In: International scientific forum on home hygiene, 2000

  • BS 2544: 1954 (1954) Determination of thickness of textile fabric. In: British standard handbook, vol 11, p 174

  • BS 5636 (1990) Method of test for the determination of the permeability of fabrics to air. British Standards Institute, Berkshire

    Google Scholar 

  • BS 7209 (1990) Specification for water vapor permeable apparel fabrics. British Standards Institute, Berkshire

    Google Scholar 

  • Cao C, Cheng J (2018) Fabrication of robust surfaces with special wettability on porous copper substrates for various oil/water separations. Chem Eng J 347:585–594

    Article  CAS  Google Scholar 

  • Cerne L, Simoncic B (2004) Influence of repellent finishing on the surface free energy of cellulosic textile substrates. Text Res J 74(5):426–432

    Article  CAS  Google Scholar 

  • Chinta SK, Satish D (2014) Studies in waterproof breathable textiles. Int J Recent Dev Eng Technol 3:16–20

    Google Scholar 

  • Chowdhury KP (2018a) Impact of different water repellent finishes on cotton double jersey fabrics. J Text Sci Technol 4(3):85–99

    Article  Google Scholar 

  • Chowdhury KP (2018b) Process intensification of fluorocarbon-free and fluorocarbon-based water repellent finishes on cotton knit fabrics. J Text Eng Fash Technol 4(3):232–240

    Google Scholar 

  • Chung C, Lee M, Choe EK (2004) Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr Polym 58:417–420

    Article  CAS  Google Scholar 

  • Colleoni C, Massafra MR, Migani V, Rosace G (2011) Dendrimer finishing influence on CO/PES blended fabrics color assessment. J Appl Polym Sci 120:2122–2129

    Article  CAS  Google Scholar 

  • Crews PC, Clark DJ (1990) Evaluating UV absorbers and antioxidants for topical treatment of upholstery fabrics. Text Res J 60(3):172–179

    Article  CAS  Google Scholar 

  • Danish Environmental Protection Agency, More environmentally friendly alternatives to PFOS compounds and PFOA, March 2005

  • Dashairya L, Sahu A, Saha P (2019) Stearic acid treated polypyrrole-encapsulated melamine formaldehyde superhydrophobic sponge for oil recovery. Adv Compos Hybrid Mater 2(1):70–82

    Article  CAS  Google Scholar 

  • De P, Sankhe MD, Chaudhari SS, Mathur MR (2005) UV-resist, water-repellent breathable fabric as protective textiles. J Ind Text 34:209–222

    Article  CAS  Google Scholar 

  • Dong C, Lu Z, Zhang F, Zhu P, Zhang L, Sui S (2015) Preparation and properties of cotton fabrics treated with a novel polysiloxane water repellent and flame retardant. Mater Lett 152:276–279

    Article  CAS  Google Scholar 

  • Flynn JH (2002) Applications to polymers and plastics. In: Handbook of thermal analysis and calorimetry. https://www.sciencedirect.com/topics/chemistry/polysiloxane

  • Forsberg K, Van den Borre A, Iii NH, Zeigler JP (2014) Quick selection guide to chemical protective clothing, 6th edn. Wiley, Hoboken

    Google Scholar 

  • Gal’braikh LS (2005) Modified fibre and film materials. Fibre Chem 37:338–345

    Article  CAS  Google Scholar 

  • Ghosh S, Yadav S, Vasanthan N, Sekosan G (2010) A study of antimicrobial property of textile fabric treated with modified dendrimers. J Appl Polym Sci 115:716–722

    Article  CAS  Google Scholar 

  • Guo Z, Liu W, Su B-L (2011) Superhydrophobic surfaces: from natural to biomimetic to functional. J Colloid Interf Sci 353:335–355

    Article  CAS  Google Scholar 

  • Gupta S (2002) VK Kapoor-fundamental of mathematical statistics. Sultan Chand and Sons, Educational Publishers, New Delhi

    Google Scholar 

  • Haynes WM (2017) CRC handbook of chemistry and physics, vol 2016–2017, 97th edn. CRC Press, Boca Raton

    Google Scholar 

  • Jain AK, Tesema AF, Haile A (2018) Development of multifunctional cotton using fluorocarbon resin. J Eng Fibers Fabr 1:1–8

    Google Scholar 

  • Jenkins R, Snyder RL (1996) Introduction to X-ray powder diffractometry. Wiley, New York

    Book  Google Scholar 

  • Jeyasubramanian K, Hikku G, Preethi A, Benitha V, Selvakumar N (2016) Fabrication of water repellent cotton fabric by coating nano particle impregnated hydrophobic additives and its characterization. J Ind Eng Chem 37:180–189

    Article  CAS  Google Scholar 

  • Kasturiya N, Bhargava G (2003) Liquid repellency and durability assessment: a quick technique. J Ind Text 32:187–222

    Article  Google Scholar 

  • Khoddami A, Gong H, Ghadimi G (2012) Effect of wool surface modification on fluorocarbon chain re-orientation. Fiber Polym 13:28–37

    Article  CAS  Google Scholar 

  • Khoddami A, Bazanjani S, Gong R (2015) Investigating the effects of different repellent agents on the performance of novel polyester/wool blended fabrics. J Eng Fib Fabr 10:137–146

    CAS  Google Scholar 

  • Krishnan S (1991) Technology of breathable coatings. J Coat Fabr 21:71–74

    Article  Google Scholar 

  • Lee S, Cho J-S, Cho G (1999) Antimicrobial and blood repellent finishes for cotton and nonwoven fabrics based on chitosan and fluoropolymers. Text Res J 69(2):104–112

    Article  CAS  Google Scholar 

  • Li J, Wang G, Meng Q, Ding C, Jiang H, Fang Y (2014) A biomimetic nano hybrid coating based on the lotus effect and its anti-biofouling behaviors. Appl Surf Sci 315:407–414

    Article  CAS  Google Scholar 

  • Lidija C, Simoncic B (2008) The use of Zisman model in determining the critical surface tension of the water and oil repellent finished textiles. Tekstilec 51(4/6):107–121

    Google Scholar 

  • Lin J, Cai Y, Wang X, Ding B, Yu J, Wang M (2011) Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf. Nanoscale 3:1258–1262

    Article  CAS  Google Scholar 

  • Majumdar A, Gupta D, Gupta S (eds) (2020) Functional textiles and clothing. Springer, Singapore

    Google Scholar 

  • Midha VK, Vashish R, Midha V (2014) Durability of fluoropolymer and antibacterial finishes on woven surgical gown fabrics. Fash Text 1:12

    Article  Google Scholar 

  • Namligoz ES, Bahtiyari MI, Hosaf E, Coban S (2009) Performance comparison of new (dendrimer, nanoproduct) and conventional water, oil and stain repellents. Fibres Text East Eur 17:76–81

    CAS  Google Scholar 

  • Omae K, Takebayashi T, Ishizuka C, Uemura T (1998) Toxicity of silicon compounds in semiconductor industries Hiroshi NAKASHIMA. J Occup Health 40:270–275

    Article  Google Scholar 

  • Pande S, Crooks RM (2011) Analysis of poly (amidoamine) dendrimer structure by UV–Vis spectroscopy. Langmuir 27:9609–9613

    Article  CAS  Google Scholar 

  • Roey MV (1992) Water-resistant breathable fabrics. J Coat Fabr 22:20–31

    Article  Google Scholar 

  • Russell AD, Chopra I (1996) Understanding antibacterial action and resistance. Ellis Horwood Limited, London

    Google Scholar 

  • Sayed U, Dabhi P (2014) Finishing of textiles with fluorocarbons. In: Williams J (ed) Waterproof and water repellent. Textiles and clothing. Elsevier, Amsterdam, pp 139–152

    Chapter  Google Scholar 

  • Schindler WD, Hauser PJ (2004) Chemical finishing of textiles. Woodhead Publishing, Cambridge, pp 74–84

    Google Scholar 

  • Shekar RI, Yadav A, Kasturiya N, Raj H (1999) Studies on combined flame-retardant and water-repellent treatments on cotton drill fabric. Indian J Fibre Text 24:197–207

    CAS  Google Scholar 

  • Shekar RI, Kasturiya N, Raj H, Mathur G (2001) Studies on effect of water repellent treatment on flame retardant properties of fabric. J Ind Text 30:222–254

    Article  CAS  Google Scholar 

  • Siddiqui AR, Maurya R, Balani K (2017) Superhydrophobic self-floating carbon nanofiber coating for efficient gravity-directed oil/water separation. J Mater Chem A 5:2936–2946

    Article  CAS  Google Scholar 

  • Singh AK, Singh JK (2016) Fabrication of zirconia based durable superhydrophobic–superoleophilic fabrics using non fluorinated materials for oil–water separation and water purification. RSC Adv 6:103632–103640

    Article  CAS  Google Scholar 

  • Skin Cancer Foundation (2015). The skin cancer foundation shares essential sun safety tips for outdoor winter sports. http://www.skincancer.org/media-and-press/press-release-2015/winter-sports

  • Sun D, Wang W, Yu D (2017) Highly hydrophobic cotton fabrics prepared with fluorine-free functionalized silsesquioxanes. Cellulose 24:4519–4531

    Article  CAS  Google Scholar 

  • Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17(1):117–132

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (2004) A guide to the UV Index. https://www.epa.gov/sites/production/files/documents/uviguide.pdf

  • Vigneswaran C, Chandrasekaran K, Senthilkumar P (2009) Effect of thermal conductivity behavior of jute/cotton blended knitted fabrics. J Ind Text 38:289–307

    Article  Google Scholar 

  • Wang C-X, Mao Li, Jiang G-W, Fang K-J, Tian A (2007) Surface modification with silicon sol on cotton fabrics for water-repellent finishing. Res J Text Appl 11:27–34

    CAS  Google Scholar 

  • Wang H, Xue Y, Ding J, Feng L, Wang X, Lin T (2011) Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane. Angew Chem Int Ed 50:11433–11436

    Article  CAS  Google Scholar 

  • Wang Z, Wang Y, Liu G (2016) Rapid and efficient separation of oil from oil-in-water emulsions using a Janus cotton fabric. Angew Chem Int Ed 55:1291–1294

    Article  CAS  Google Scholar 

  • Wang H, Song X, Xu L, Li X, Wang J, Zhao Y, Cai Z (2018) Fabrication of acid-resistant fabrics with fluoropolymer/SiO2 nanocomposites for the application of protective clothing. J Ind Text 47:727–740

    Article  CAS  Google Scholar 

  • Windisch B, Vogtle F, Gestermann S, Hesse R, Schwierz H (2000) Functional dendrimers. Prog Polym Sci 25:987–1041

    Article  Google Scholar 

  • Xu B, Cai Z, Wang W, Ge F (2010) Preparation of superhydrophobic cotton fabrics based on SiO2 nanoparticles and ZnO nanorod arrays with subsequent hydrophobic modification. Surf Coat Technol 204:1556–1561

    Article  CAS  Google Scholar 

  • Yang M, Jiang C, Liu W, Liang L, Pi K (2019) A less harmful system of preparing robust fabrics for integrated self-cleaning, oil-water separation and water purification. Environ Pollut 255:1–9

    Article  Google Scholar 

  • Ye D, Farriol X (2005) Improving accessibility and reactivity of celluloses of annual plants for the synthesis of methylcellulose. Cellulose 12:507–515

    Article  CAS  Google Scholar 

  • Yoshida N, Takeuchi M, Okura T, Monma H, Wakamura M, Ohsaki H, Watanabe T (2006) Super-hydrophobic photocatalytic coatings utilizing apatite-based photocatalyst. Thin Solid Films 502(1–2):108–111

    Article  CAS  Google Scholar 

  • Yuan S-J, Zhang J-J, Fan H-X, Dai X-H (2018) Facile and sustainable shear mixing/carbonization approach for upcycling of carton into superhydrophobic coating for efficient oil-water separation. J Clean Prod 196:644–652

    Article  CAS  Google Scholar 

  • Zhou H, Wang H, Niu H, Gestos A, Lin T (2013) Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkylsilane, and modified silica nanoparticles. Adv Funct Mater 23:1664–1670

    Article  CAS  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Ibrahim H. Mondal.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Ethical standard

This article does not involve the participation of humans or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, M.I.H., Saha, J. Fabrication of C6-Fluorocarbon-dendrimer-based superhydrophobic cotton fabrics for multifunctional aspects. Cellulose 30, 639–663 (2023). https://doi.org/10.1007/s10570-022-04881-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-022-04881-3

Keywords

Navigation