Skip to main content

Biocompatible hydrogels based on chitosan, cellulose/starch, PVA and PEDOT:PSS with high flexibility and high mechanical strength

Abstract

Fabricating mechanically strong hydrogels that can withstand the conditions in internal tissues is a challenging task. We have designed hydrogels based on multicomponent systems by combining chitosan, starch/cellulose, PVA, and PEDOT:PSS via one-pot synthesis. The starch-based hydrogels were homogeneous, while the cellulose-based hydrogels showed the presence of cellulose micro- and nanofibers. The cellulose-based hydrogels demonstrated a swelling ratio between 121 and 156%, while the starch-based hydrogels showed higher values, from 234 to 280%. Tensile tests indicated that the presence of starch in the hydrogels provided high flexibility (strain at break > 300%), while combination with cellulose led to the formation of stiffer hydrogels (elastic moduli 3.9–6.6 MPa). The ultimate tensile strength for both types of hydrogels was similar (2.8–3.9 MPa). The adhesion and growth of human osteoblast-like SAOS-2 cells was higher on hydrogels with cellulose than on hydrogels with starch, and was higher on hydrogels with PEDOT:PSS than on hydrogels without this polymer. The metabolic activity of cells cultivated for 3 days in the hydrogel infusions indicated that no acutely toxic compounds were released. This is promising for further possible applications of these hydrogels in tissue engineering or in wound dressings.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  • Abou-Yousef H, Dacrory S, Hasanin M, Saber E, Kamel S (2021) Biocompatible hydrogel based on aldehyde-functionalized cellulose and chitosan for potential control drug release. Sustain Chem Pharm 21:100419

    CAS  Article  Google Scholar 

  • Aelenei N, Popa MI, Novac O, Lisa G, Balaita L (2009) Tannic acid incorporation in chitosan-based microparticles and in vitro controlled release. J Mater Sci-Mater M 20:1095–1102

    CAS  Article  Google Scholar 

  • Azar MG, Dodda JM, Belsky P, Slouf M, Vavrunkova V, Kadlec J, Remis T (2021) Tough and flexible conductive triple network hydrogels based on agarose/polyacrylamide/polyvinyl alcohol and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate. Polym Int 70:1523–1533

    CAS  Article  Google Scholar 

  • Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V (2011) Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv 29:739–767

    CAS  PubMed  Article  Google Scholar 

  • Cael JJ, Koenig JL, Blackwell J (1975) Infrared and Raman-Spectroscopy of Carbohydrates. 6. Normal Coordinate Analysis of V-Amylose Biopolymers 14:1885–1903

    CAS  Google Scholar 

  • Chen JB, Chen CT, Liang GY, Xu XR, Hao QL, Sun DP (2019) In situ preparation of bacterial cellulose with antimicrobial properties from bioconversion of mulberry leaves. Carbohyd Polym 220:170–175

    CAS  Article  Google Scholar 

  • Cheng FM, Chen HX, Li HD (2020) Recent advances in tough and self-healing nanocomposite hydrogels for shape morphing and soft actuators. Eur Polym J 124:109449

    Article  CAS  Google Scholar 

  • Cikova E, Micusik M, Siskova A, Prochazka M, Fedorko P, Omastova M (2018) Conducting electrospun polycaprolactone/polypyrrole fibers. Synthetic Met 235:80–88

    CAS  Article  Google Scholar 

  • Cui C, Fu QJ, Meng L, Hao SW, Dai RG, Yang J (2021) Recent progress in natural biopolymers conductive hydrogels for flexible wearable sensors and energy devices: materials, structures, and performance. Acs Appl Bio Mater 4:85–121

    CAS  PubMed  Article  Google Scholar 

  • Cui TQ, Wu Y, Ni CL, Sun YX, Cheng JJ (2022) Rheology and texture analysis of gelatin/dialdehyde starch hydrogel carriers for curcumin controlled release. Carbohyd Polym 283:119154

    CAS  Article  Google Scholar 

  • Dieter MP (1994) Toxicity and carcinogenicity studies of boric acid in male and female B6C3F1 mice. Environ Health Perspect 102(Suppl 7):93–97

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Distler T, Boccaccini AR (2020) 3D printing of electrically conductive hydrogels for tissue engineering and biosensors - A review. Acta Biomater 101:1–13

    CAS  PubMed  Article  Google Scholar 

  • Distler T, Schaller E, Steinmann P, Boccaccini AR, Budday S (2020) Alginate-based hydrogels show the same complex mechanical behavior as brain tissue. J Mech Behav Biomed 111:103979

    CAS  Article  Google Scholar 

  • Dziadek M, Dziadek K, Salagierski S, Drozdowska M, Serafim A, Stancu I-C, Szatkowski P, Kopec A, Rajzer I, E.L. Douglas T, Cholewa-Kowalska K, (2022) Newly crosslinked chitosan- and chitosan-pectin-based hydrogels with high antioxidant and potential anticancer activity. Carbohyd Polym 290:119486

    CAS  Article  Google Scholar 

  • Eleswarapu SV, Responte DJ, Athanasiou KA (2011) Tensile properties, collagen content, and crosslinks in connective tissues of the immature knee joint. PLoS ONE 6:e26178

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Eschweiler J, Horn N, Rath B, Betsch M, Baroncini A, Tingart M, Migliorini F (2021) The Biomechanics of Cartilage-an Overview Life-Basel 11:302

    CAS  PubMed  Google Scholar 

  • Farah AA, Rutledge SA, Schaarschmidt A, Lai R, Freedman JP, Helmy AS (2012) Conductivity enhancement of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) films post-spincasting. J Appl Phys 112:113709

    Article  CAS  Google Scholar 

  • Fu FF, Shang LR, Chen ZY, Yu YR, Zhao YJ (2018) Bioinspired living structural color hydrogels. Sci Robot 3:eaar8580

    PubMed  Article  Google Scholar 

  • Garreau S, Louarn G, Buisson JP, Froyer G, Lefrant S (1999) In situ spectroelectrochemical Raman studies of poly(3,4-ethylenedioxythiophene) (PEDT). Macromolecules 32:6807–6812

    CAS  Article  Google Scholar 

  • Guex AG, Puetzer JL, Armgarth A, Littmann E, Stavrinidou E, Giannelis EP, Malliaras GG, Stevens MM (2017) Highly porous scaffolds of PEDOT:PSS for bone tissue engineering. Acta Biomater 62:91–101

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Horikawa M, Fujiki T, Shirosaki T, Ryu N, Sakurai H, Nagaoka S, Ihara H (2015) The development of a highly conductive PEDOT system by doping with partially crystalline sulfated cellulose and its electric conductivity. J Mater Chem C 3:8881–8887

    CAS  Article  Google Scholar 

  • Huang F, Chen TY, Chang J, Zhang C, Liao FX, Wu LW, Wang WB, Yin ZS (2021) A conductive dual-network hydrogel composed of oxidized dextran and hyaluronic-hydrazide as BDNF delivery systems for potential spinal cord injury repair. Int J Biol Macromol 167:434–445

    CAS  PubMed  Article  Google Scholar 

  • Ilavsky J, Jemian PR (2009) Irena: tool suite for modeling and analysis of small-angle scattering. J Appl Crystallogr 42:347–353

    CAS  Article  Google Scholar 

  • Kaberova Z, Karpushkin E, Nevoralova M, Vetrik M, Slouf M, Duskova-Smrckova M (2020) Microscopic structure of swollen hydrogels by scanning electron and light microscopies: artifacts and reality. Polymers-Basel 12:578

    CAS  PubMed Central  Article  Google Scholar 

  • Kacurakova M, Capek P, Sasinkova V, Wellner N, Ebringerova A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohyd Polym 43:195–203

    CAS  Article  Google Scholar 

  • Kayser LV, Lipomi DJ (2019) Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv Mater 31:1806133

    Article  CAS  Google Scholar 

  • Khorasani MT, Joorabloo A, Adeli H, Mansoori-Moghadam Z, Moghaddam A (2019) Design and optimization of process parameters of polyvinyl (alcohol)/chitosan/nano zinc oxide hydrogels as wound healing materials. Carbohyd Polym 207:542–554

    CAS  Article  Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    CAS  PubMed  Article  Google Scholar 

  • Kumar A, Rao KM, Han SS (2017) Synthesis of mechanically stiff and bioactive hybrid hydrogels for bone tissue engineering applications. Chem Eng J 317:119–131

    CAS  Article  Google Scholar 

  • Le Troedec M, Sedan D, Peyratout C, Bonnet JP, Smith A, Guinebretiere R, Gloaguen V, Krausz P (2008) Influence of various chemical treatments on the composition and structure of hemp fibres. Compos Part a-Appl S 39:514–522

    Article  CAS  Google Scholar 

  • Lee KY, Quero F, Blaker JJ, Hill CAS, Eichhorn SJ, Bismarck A (2011) Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose 18:595–605

    CAS  Article  Google Scholar 

  • Leppanen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16:999–1015

    Article  CAS  Google Scholar 

  • Liu N, Chen XG, Park HJ, Liu CG, Liu CS, Meng XH, Yu LJ (2006) Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohyd Polym 64:60–65

    CAS  Article  Google Scholar 

  • Lu BY, Yuk H, Lin ST, Jian NN, Qu K, Xu JK, Zhao XH (2019) Pure PEDOT:PSS hydrogels. Nat Commun 10(1):1043. https://doi.org/10.1038/s41467-019-09003-5

    CAS  Article  PubMed  Google Scholar 

  • Ma ZX, Garrido-Maestu A, Jeong KC (2017) Application, mode of action, and in vivo activity of chitosan and its micro and nanoparticles as antimicrobial agents: a review. Carbohyd Polym 176:257–265

    CAS  Article  Google Scholar 

  • Mahmoudinezhad MH, Karkhaneh A, Jadidi K (2018) Effect of PEDOT:PSS in tissue engineering composite scaffold on improvement and maintenance of endothelial cell function. J Biosciences 43:307–319

    Article  CAS  Google Scholar 

  • Mansur HS, Costa HS (2008) Nanostructured poly(vinyl alcohol)/bioactive glass and poly (vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications. Chem Eng J 137:72–83

    CAS  Article  Google Scholar 

  • Marchessault RH, Pearson FG, Liang CY (1960) Infrared spectra of crystalline polysaccharides. VI. Effect of orientation on the tilting spectra of chitin films. Biochim Biophys Acta 45:499–507

    CAS  PubMed  Article  Google Scholar 

  • Marchessault RH, Sundararajan PR (1983) Cellulose. Polysaccharides 2:11–95. https://doi.org/10.1016/b978-0-12-065602-8.50007-8

    CAS  Article  Google Scholar 

  • Matoso V, Bargi-Souza P, Ivanski F, Romano MA, Romano RM (2019) Acrylamide: a review about its toxic effects in the light of developmental origin of health and disease (DOHaD) concept. Food Chem 283:422–430

    CAS  PubMed  Article  Google Scholar 

  • Millon LE, Nieh MP, Hutter JL, Wan WK (2007) SANS characterization of an anisotropic poly(vinyl alcohol) hydrogel with vascular applications. Macromolecules 40:3655–3662

    CAS  Article  Google Scholar 

  • Moghadam M, Dorraji MSS, Dodangeh F, Ashjari HR, Mousavi SN, Rasoulifard MH (2022) Design of a new light curable starch-based hydrogel drug delivery system to improve the release rate of quercetin as a poorly water-soluble drug. Eur J Pharm Sci 174:106191

    CAS  PubMed  Article  Google Scholar 

  • Morsi MA, Oraby AH, Elshahawy AG, Abd El-Hady RM (2019) Preparation, structural analysis, morphological investigation and electrical properties of gold nanoparticles filled polyvinyl alcohol/carboxymethyl cellulose blend. J Mater Res Technol 8:5996–6010

    CAS  Article  Google Scholar 

  • Moscato G, Pala G, Perfetti L, Frascaroli M, Pignatti P (2010) Clinical and inflammatory features of occupational asthma caused by persulphate salts in comparison with asthma associated with occupational rhinitis. Allergy 65:784–790

    CAS  PubMed  Article  Google Scholar 

  • Nazir F, Ashraf I, Iqbal M, Ahmad T, Anjum S (2021) 6-deoxy-aminocellulose derivatives embedded soft gelatin methacryloyl (GelMA) hydrogels for improved wound healing applications: in vitro and in vivo studies. Int J Biol Macromol 185:419–433

    CAS  PubMed  Article  Google Scholar 

  • Nikonenko NA, Buslov DK, Sushko NI, Zhbankov RG (2000) Investigation of stretching vibrations of glycosidic linkages in disaccharides and polysaccarides with use of IR spectra deconvolution. Biopolymers 57:257–262

    CAS  PubMed  Article  Google Scholar 

  • Nomoto T, Inoue Y, Yao Y, Suzuki M, Kanamori K, Takemoto H, Matsui M, Tomoda K, Nishiyama N (2020) Poly(vinyl alcohol) boosting therapeutic potential of p-boronophenylalanine in neutron capture therapy by modulating metabolism. Sci Adv 6:eaaz1722

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Pandian M, Selvaprithviraj V, Pradeep A, Rangasamy J (2021) In-situ silver nanoparticles incorporated N, O-carboxymethyl chitosan based adhesive, self-healing, conductive, antibacterial and anti-biofilm hydrogel. Int J Biol Macromol 188:501–511

    CAS  PubMed  Article  Google Scholar 

  • Pavlovic S, Brandao PRG (2003) Adsorption of starch, amylose, amylopectin and glucose monomer and their effect on the flotation of hematite and quartz. Miner Eng 16:1117–1122

    CAS  Article  Google Scholar 

  • Qu J, Zhao X, Ma PX, Guo BL (2018) Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized “smart” drug release. Acta Biomater 72:55–69

    CAS  PubMed  Article  Google Scholar 

  • Qu J, Liang YP, Shi MT, Guo BL, Gao YZ, Yin ZH (2019) Biocompatible conductive hydrogels based on dextran and aniline trimer as electro-responsive drug delivery system for localized drug release. Int J Biol Macromol 140:255–264

    CAS  PubMed  Article  Google Scholar 

  • Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromol 4:1457–1465

    CAS  Article  Google Scholar 

  • Reig-Vano B, Tylkowski B, Montane X, Giamberini M (2021) Alginate-based hydrogels for cancer therapy and research. Int J Biol Macromol 170:424–436

    CAS  PubMed  Article  Google Scholar 

  • Ren L, Yan X, Zhou J, Tong J, Su X (2017) Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films. Int J Biol Macromol 105:1636–1643

    CAS  PubMed  Article  Google Scholar 

  • Rennerfeldt DA, Renth AN, Talata Z, Gehrke SH, Detamore MS (2013) Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering. Biomaterials 34:8241–8257

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ricciardi R, Auriemma F, De Rosa C, Laupretre F (2004) X-ray diffraction analysis of poly(vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules 37:1921–1927

    CAS  Article  Google Scholar 

  • Shamloo A, Aghababaie Z, Afjoul H, Jami M, Bidgoli MR, Vossoughi M, Ramazani A, Kamyabhesari K (2021) Fabrication and evaluation of chitosan/gelatin/PVA hydrogel incorporating honey for wound healing applications: An in vitro, in vivo study. Int J Pharmaceut 592:120068

    CAS  Article  Google Scholar 

  • Shin J, Choi EJ, Cho JH, Cho AN, Jin Y, Yang K, Song C, Cho SW (2017) Three-dimensional electroconductive hyaluronic acid hydrogels incorporated with carbon nanotubes and polypyrrole by catechol-mediated dispersion enhance neurogenesis of human neural stem cells. Biomacromol 18:3060–3072

    CAS  Article  Google Scholar 

  • Shou YF, Zhang JH, Yan SF, Xia PF, Xu PL, Li GF, Zhang KX, Yin JB (2020) Thermoresponsive Chitosan/DOPA-based hydrogel as an injectable therapy approach for tissue-adhesion and hemostasis. Acs Biomater Sci Eng 6:3619–3629

    CAS  PubMed  Article  Google Scholar 

  • Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose 19:1225–1237

    CAS  Article  Google Scholar 

  • Teodorescu M, Morariu S, Bercea M, Sacarescu L (2016) Viscoelastic and structural properties of poly(vinyl alcohol)/poly(vinylpyrrolidone) hydrogels. Rsc Adv 6:39718–39727

    CAS  Article  Google Scholar 

  • Tian F, Liu Y, Hu KA, Zhao BY (2004) Study of the depolymerization behavior of chitosan by hydrogen peroxide. Carbohyd Polym 57:31–37

    CAS  Article  Google Scholar 

  • Unal M, Yucel I, Akar Y, Oner A, Altin M (2006) Outbreak of toxic anterior segment syndrome associated with glutaraldehyde after cataract surgery. J Cataract Refr Surg 32:1696–1701

    Article  Google Scholar 

  • van der Pol TPA, Keene ST, Saes BWH, Meskers SCJ, Salleo A, van de Burgt Y, Janssen RAJ (2019) The mechanism of dedoping PEDOT:PSS by aliphatic polyamines. J Phys Chem C Nanomater Interfaces 123:24328–24337

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Varun TK, Senani S, Jayapal N, Chikkerur J, Roy S, Tekulapally VB, Gautam M, Kumar N (2017) Extraction of chitosan and its oligomers from shrimp shell waste, their characterization and antimicrobial effect. Vet World 10:170–175

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wang C, Yue HB, Feng Q, Xu BZ, Bian LM, Shi P (2018) Injectable nanoreinforced shape-memory hydrogel system for regenerating spinal cord tissue from traumatic injury. Acs Appl Mater Inter 10:29299–29307

    CAS  Article  Google Scholar 

  • Wang B, Cheng M, Yang SJ, Qiu WH, Li W, Zhou Y, Wang X, Yang M, He H, Zhu CM, Cen XZ, Chen AL, Xiao LL, Zhou M, Ma JX, Mu G, Wang DM, Guo YJ, Zhang XM, Chen WH (2020) Exposure to acrylamide and reduced heart rate variability: the mediating role of transforming growth factor-beta. J Hazard Mater 395:122677

    CAS  PubMed  Article  Google Scholar 

  • Wang Y, Liu X, Yang R, Ma Q (2021) Asymmetric wetting and antibacterial composite membrane obtained by spraying bacterial cellulose grafted with chitosan for sanitary products surface layers. Carbohydr Polym 256:117602

    CAS  PubMed  Article  Google Scholar 

  • Wei XR, Ma K, Cheng YB, Sun LY, Chen DJ, Zhao XL, Lu H, Song BT, Yang KW, Jia PX (2020) Adhesive, Conductive, Self-Healing, and Antibacterial Hydrogel Based on Chitosan-Polyoxometalate Complexes for Wearable Strain Sensor. Acs Appl Polym Mater 2:2541–2549

    CAS  Article  Google Scholar 

  • Wiercigroch E, Szafraniec E, Czamara K, Pacia MZ, Majzner K, Kochan K, Kaczor A, Baranska M, Malek K (2017) Raman and infrared spectroscopy of carbohydrates: A review. Spectrochim Acta A 185:317–335

    CAS  Article  Google Scholar 

  • Xu B, Gopalan SA, Gopalan AI, Muthuchamy N, Lee KP, Lee JS, Jiang Y, Lee SW, Kim SW, Kim JS, Jeong HM, Kwon JB, Bae JH, Kang SW (2017) Functional solid additive modified PEDOT:PSS as an anode buffer layer for enhanced photovoltaic performance and stability in polymer solar cells. Sci Rep 7:45079

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Yang LL, Zhang LT, Hu J, Wang WJ, Liu XQ (2021) Promote anti-inflammatory and angiogenesis using a hyaluronic acid-based hydrogel with miRNA-laden nanoparticles for chronic diabetic wound treatment. Int J Biol Macromol 166:166–178

    CAS  PubMed  Article  Google Scholar 

  • Yuan ZX, Qin QM, Yuan M, Wang HX, Li R (2020) Development and novel design of clustery graphene oxide formed Conductive Silk hydrogel cell vesicle to repair and routine care of myocardial infarction: Investigation of its biological activity for cell delivery applications. J Drug Deliv Sci Tec 60:102001

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The work was supported within the framework of a European Regional Development Fund Project, under the title Application of Modern Technologies in Medicine and Industry (No. CZ.02.1.01/0.0/0.0/17_048/0007280). Further support (A.B., L.B.) was provided by the Czech Science Foundation (Grant No. 20-01641S). We would like to thank Dr. Veronika Vavruňková (NTC) for performing the FT-IR measurements. Mr. Robin Healey (Czech Technical University) is gratefully acknowledged for his language revision of the manuscript.

Funding

European Regional Development Fund, CZ.02.1.01/0.0/0.0/17_048/0007280, Grantová Agentura České Republiky, 20-01641S, Lucie Bačáková

Author information

Authors and Affiliations

Authors

Contributions

JMD contributed to the study conception and design. Hydrogel preparation, characterization and analysis were performed by all authors. The first draft of the manuscript was written by JMD and PB and all authors contributed to the following versions of the manuscript. All authors read and approved the final manuscript.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dodda, J.M., Azar, M.G., Bělský, P. et al. Biocompatible hydrogels based on chitosan, cellulose/starch, PVA and PEDOT:PSS with high flexibility and high mechanical strength. Cellulose 29, 6697–6717 (2022). https://doi.org/10.1007/s10570-022-04686-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-022-04686-4

Keywords

  • Multicomponent hydrogel
  • Cellulose/starch
  • Chitosan
  • PVA
  • Mechanical properties
  • Morphology