Skip to main content
Log in

Structure–activity relationship of thermal interaction between arylmalonamide[70]fullerocyclopropane stabilizer and nitrocellulose

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The thermal decomposition or even explosion of nitrocellulose during long-term storage is prevented by adding stabilizers to nitrocellulose-based propellants. A series of novel arylmalonamide[70]fullerocyclopropane (3a–c) were synthesized through Bingel reaction. The molecular structures of 3a–c were verified through 1H NMR, 13C NMR, Fourier transform infrared spectroscopy (FT-IR), UV–visible spectroscopy, and mass spectrum. The thermal stability of 3a–c to nitrocellulose was studied by methyl violet paper test and iso-thermogravimetry method, and the results showed that the stability of 3a–c to nitrocellulose was significantly better than that of the [60]fullerene-based stabilizers. The thermal stability of 3a–c to nitrocellulose improved as the increase of the carbon chain length on the p-position of the benzene ring. The effects of 3a–c on the thermal decomposition of nitrocellulose were obtained by differential thermal analysis, and the results showed that the critical temperature of the thermal explosion of nitrocellulose can be increased by 0.1–2.8 °C by 3a–c. The thermal stability of 3a–c to nitrocellulose in adiabatic environment was confirmed by accelerating rate calorimetry. In addition, the stabilization mechanism was studied through ESR and FT-IR, and the results showed that 3a–c can react with nitrogen oxide radicals released by nitrocellulose. These arylmalonamide[70]fullerocyclopropane with excellent thermal stability and strong radical scavenging ability can be used as a promising stabilizer for single and double based propellants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Agrawal JP, Surve RN, Mehilal M, Sonawane SH (2000) Some aromatic nitrate esters: synthesis, structural aspects, thermal and explosive properties. J Hazard Mater 77:11–31

    Article  CAS  PubMed  Google Scholar 

  • Butts CP, Jazdzyk M (2003) The preparation and structures of non-hydrocarbon functionalised fullerene-diamine adducts. Chem Commun 34:1530–1531

    Article  Google Scholar 

  • Chai ZH, Luo LQ, Jin B, Zhao Y, Xiao LPC, Li G, Zhang QC, Peng RF (2020) Fullerene stabilizer 4,11,15,30-tetraarylamino fullerenoarylaziridine: regioselective synthesis, crystallographic characterization derivatives, and potential application as propellant stabilizer. ACS Appl Energy Mater 3:3005–3014

    Article  CAS  Google Scholar 

  • Cherif MF, Trache D, Benaliouche F, Chelouche S, Tarchoun AF, Mezroua A (2020a) Effect of Kraft lignins on the stability and thermal decomposition kinetics of nitrocellulose. Thermochim Acta 692:178732

    Article  CAS  Google Scholar 

  • Cherif MF, Trache D, Benaliouche F, Chelouche S, Tarchoun AF, Chelouche S, Mezroua A (2020b) Organosolv lignins as new stabilizers for cellulose nitrate: thermal behavior and stability assessment. Int J Biol Macromol 164:794–807

    Article  CAS  Google Scholar 

  • Cherif MF, Trache D, Benaliouche F, Chelouche S, Tarchoun AF, Kesraoui M, Abdelaziz A (2021) Mordenite zeolite for scavenging nitroxide radicals and its effect on the thermal decomposition of nitrocellulose. J Energ Mater. https://doi.org/10.1080/07370652.2021.1998250

    Article  Google Scholar 

  • De Klerk WPC (2015) Assessment of stability of propellants and safe lifetimes. Propell Explos Pyrot 40(3):388–393

    Article  CAS  Google Scholar 

  • Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21(13):1323–1338

    Article  CAS  Google Scholar 

  • Dogru M, Handloser M, Auras F, Kunz T, Medina D, Hartschuh A, Knochel P, Bein T (2012) A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene. Angew Chem Int Edit 52:2920–2924

    Article  CAS  Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, Cambridge, pp 437–438

    Google Scholar 

  • Drzyzga O (2003) Diphenylamine and derivatives in the environment: a review. Chemosphere 53(8):809–818

    Article  CAS  PubMed  Google Scholar 

  • Fryš O, Bajerová P, Eisner A, Skládal J, Ventura K (2011) Utilization of new non-toxic substances as stabilizers for nitrocellulose-based propellants. Propell Explos Pyrot 36(4):347–355

    Article  CAS  Google Scholar 

  • Hassan MA (2001) Effect of malonyl malonanilide dimmers on the thermal stability of nitrocellulose. J Hazard Mater 88(1):33–49

    Article  CAS  PubMed  Google Scholar 

  • Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB (2005) Cyto-toxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci and Technol 39(5):1378–1383

    Article  CAS  Google Scholar 

  • Katoh K, Yoshino S, Kubota S, Wada Y, Ogata Y, Nakahama M, Kawaguchi S, Arai M (2007) The effects of conventional stabilizers and phenol compounds used as antioxidants on the stabilization of nitrocellulose. Propell Explos Pyrot 32(4):314–321

    Article  CAS  Google Scholar 

  • Krishna V, Stevens N, Koopman B, Moudgil B (2010) Optical heating and rapid transformation of functionalized fullerenes. Nature Nanotechnol 5(5):330–334

    Article  CAS  Google Scholar 

  • Krumlinde P, Ek S, Tunestål E, Hafstrand A (2016) Synthesis and characterization of novel stabilizers for nitrocellulose-based propellants. Propell Explos Pyrot 42(1):78–83

    Article  CAS  Google Scholar 

  • Li G, Jin B, Chai ZH, Liao L, Chu SJ, Peng RF (2020) Synthesis and stabilization mechanism of novel stabilizers for fullerene-malonamide derivatives in nitrocellulose-based propellants. Polym Test 86:106493

    Article  CAS  Google Scholar 

  • Liao L, Jin B, Guo ZC, Xian F, Hou CJ, Peng RF (2021) Fullerene bisadduct stabilizers: the effect of different addition positions on inhibiting the autocatalytic decomposition of nitrocellulose absorbed nitroglycerin. Def Tech 17(6):1944–1953

    Article  Google Scholar 

  • Lindblom T (2002) Reactions in stabilizer and between stabilizer and nitrocellulose in propellants. Propell Explos Pyrot 27(4):197–208

    Article  CAS  Google Scholar 

  • Luo LQ, Jin B, Xiao YY, Zhang QC, Chai ZH, Huang Q, Chu SJ, Peng RF (2019) Study on the isothermal decomposition kinetics and mechanism of nitrocellulose. Polym Test 75:337–343

    Article  CAS  Google Scholar 

  • Lussier LS, Bergeron E, Gagnon H (2006) Study of the daughter products of Akardite-II. Propell Explos Pyrot 31(4):253–262

    Article  CAS  Google Scholar 

  • Markovic Z, Trajkovic V (2008) Biomedical potential of the reactive oxygen species generation and quenching by fullerenes. Biomater 29:3561–3573

    Article  CAS  Google Scholar 

  • Naud DL, Brower KR (1992) Pressure effects on the thermal decomposition of nitramines, nitrosamines, and nitrate esters. J Org Chem 57:3303–3308

    Article  CAS  Google Scholar 

  • Saraf SR, Rogers WJ, Mannan WS (2003) Using screening test data to recognize reactive chemical hazards. J Hazard Mater 104:255–267

    Article  CAS  PubMed  Google Scholar 

  • Shehata AB, Hassan MA, Nour MA (2003) Effect of new poly 2-acryloyl-N, N’-bis (4-nitrophenyl) propandiamide and poly 2-acryloyl-N, N’-bis (4-methylphenyl) propandiamide and their synergistic action on the stability of nitrocellulose. J Hazard Mater 102(2/3):121–136

    Article  CAS  PubMed  Google Scholar 

  • Srinivas D, Ghule VD (2016) Synthesis of nitrate ester and nitramine derivatives of polyfluoro alkyl compounds for high energy materials. RSC Adv 6(10):7712–7716

    Article  CAS  Google Scholar 

  • Sun ZD, Fu XL, Yu HJ, Fan XZ, Ju XH (2017) Theoretical study on stabilization mechanisms of nitrate esters using aromatic amines as stabilizers. J Hazard Mater 339:401–408

    Article  CAS  PubMed  Google Scholar 

  • Tang QF, Fan XZ, Li JZ, Bi FQ, Fu XL, Zhai LJ (2017) Experimental and theoretical studies on stability of new stabilizers for N-methyl-P-nitroaniline derivative in CMDB propellants. J Hazard Mater 327:187–196

    Article  CAS  PubMed  Google Scholar 

  • Tarchoun AF, Trache D, Krumm B, Derradji M, Bessa W (2021) Design and characterization of new advanced energetic biopolymers based on surface functionalized cellulosic materials. Cellulose 28:6107–6123

    Article  CAS  Google Scholar 

  • Tarchoun AF, Trache D, Klapötke TM, Abdelaziz A, Bekhouche S, Boukeciat H, Sahnoun N (2022a) Making progress towards promising energetic cellulosic microcrystals developed from alternative lignocellulosic biomasses. J Energ Mater. https://doi.org/10.1080/07370652.2022.2032484

    Article  Google Scholar 

  • Tarchoun AF, Trache D, Klapötke TM, Slimani K, Abdelaziz BB, A, Bekhouche S, Bessa W, (2022b) Valorization of esparto grass cellulosic derivatives for the development of promising energetic azidodeoxy biopolymers: synthesis, characterization and isoconversional thermal kinetic analysis. Propell Explos Pyrot 47(3):e202100293

    Article  CAS  Google Scholar 

  • Tarchoun AF, Sayah ZBD, Trache D, Klapötke TM, Belmerabt M, Abdelaziz A, Bekhouche S (2022c) Towards investigating the characteristics and thermal kinetic behavior of emergent nanostructured nitrocellulose prepared using various sulfonitric media. J Nanostruct Chem. https://doi.org/10.1007/s40097-021-00466-x

    Article  Google Scholar 

  • Tong Y, Wu ZP, Yang C, Yu J, Zhang X, Yang S, Deng X, Xu Y, Wen Y (2001) Determination of diphenylamine stabilizer and its nitrated derivatives in smokeless gunpowder using a tandem MS method. Analyst 126(4):480–484

    Article  CAS  PubMed  Google Scholar 

  • Trache D, Khimeche K (2013) Study on the influence of ageing on chemical and mechanical properties of N, N’-dimethyl-N, N’-diphenylcarbamide stabilized propellants. J Therm Anal Calorim 111:305–312

    Article  CAS  Google Scholar 

  • Trache D, Tarchoun AF (2019) Analytical methods for stability assessment of nitrate esters-based propellants. Crit Rev Anal Chem 49:415–438

    Article  CAS  PubMed  Google Scholar 

  • Wang GW, Yang HT, Wu P, Wang CZ (2010) Reaction of [70]Fullerene with tetraethyl methylenediphosphonate or diethyl (cyanomethyl)phosphonate revisited. Eur J Org Chem 29:5714–5721

    Article  CAS  Google Scholar 

  • Wang K, Liu DB, Xu S, Cai GW (2015) Research on the thermal history’s influence on the thermal stability of EHN and NC. Thermochim Acta 610:23–28

    Article  CAS  Google Scholar 

  • Wang B, Xin L, Wang Z, Deluca LT, Liu Z, You F (2017) Preparation and properties of a nRDX-based propellant. Propell Explos Pyrot 42:649–658

    Article  CAS  Google Scholar 

  • Xie QS, Eduardo PC, Luis E (1992) Electrochemical detection of C606– and C706–: enhanced stability of fullerides in solution. J Am Chem Soc 114(10):3978–3980

    Article  CAS  Google Scholar 

  • Zayed MA, Soliman AAW, Hassan MA (2000) Evaluation of malonanilides as new stabilizers for doubleBase propellants(I). J Hazard Mater 73(3):237–244

    Article  CAS  PubMed  Google Scholar 

  • Zayed MA, Mohamed AA, Hassan MAM (2010) Stability studies of double-base propellants with centralite and malonanilide stabilizers using MO calculations in comparison to thermal studies. J Hazard Mater 179(1–3):453–461

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Jin B, Peng RF, Ding L, Zheng T (2020a) Novel fullerene-based stabilizer for scavenging nitroxide radicals and its behavior during thermal decomposition of nitrocellulose. J Hazard Mater 191:121857–121863

    Article  CAS  Google Scholar 

  • Zhao Y, Jin B, Peng RF, Zheng T (2020b) Interaction of nitrocellulose with pentaacyloxyphenyl fullerene derivatives: autocatalytic inhibition in thermal decomposition of nitrocellulose. Cellulose 27:3611–3622

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the financial support received from National Natural Science Foundation of China (51972278), Associated Foundation of Xi’an Modern Chemistry Research Institute (No. 204-J-2020-2634), and Open Project of State Key Laboratory of Environment-friendly Energy Materials (Southwest University of Science and Technology, No. 21fksy19).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Jin or Rufang Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1056 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Jin, B., Zheng, T. et al. Structure–activity relationship of thermal interaction between arylmalonamide[70]fullerocyclopropane stabilizer and nitrocellulose. Cellulose 29, 6579–6593 (2022). https://doi.org/10.1007/s10570-022-04669-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-022-04669-5

Keywords

Navigation