Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromol 8(10):3276–3278. https://doi.org/10.1021/bm700624p
CAS
Article
Google Scholar
Abhang Y (2018) Review of different tactile sensors using piezoresistivity mechanism. J Mater Sci Eng. https://doi.org/10.4172/2169-0022.1000432
Article
Google Scholar
Aleshin AN, Berestennikov AS, Krylov PS, Shcherbakov IP, Petrov VN, Trapeznikova IN, Mamalimov RI, Khripunov AK, Tkachenko AA (2015) Electrical and optical properties of bacterial cellulose films modified with conductive polymer PEDOT/PSS. Synth Met 199:147–151. https://doi.org/10.1016/J.SYNTHMET.2014.11.022
CAS
Article
Google Scholar
Alves L, Medronho B, Antunes FE, Topgaard D, Lindman B (2015) Dissolution state of cellulose in aqueous systems. 1. Alkaline solvents. Cellulose 23(1):247–258. https://doi.org/10.1007/s10570-015-0809-6
CAS
Article
Google Scholar
Barud HS, Ribeiro CA, Crespi MS, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJL (2007) Thermal characterization of bacterial cellulose–phosphate composite membranes. J Therm Anal Calorim 87(3):815–818. https://doi.org/10.1007/s10973-006-8170-5
CAS
Article
Google Scholar
Basu A, Vadanan SV, Lim S (2019) Rational design of a scalable bioprocess platform for bacterial cellulose production. Carbohydr Polym 207:684–693. https://doi.org/10.1016/j.carbpol.2018.10.085
CAS
Article
PubMed
Google Scholar
Castner DG, Hinds K, Grainger DW (1996) X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces. Langmuir 12(21):5083–5086. https://doi.org/10.1021/la960465w
CAS
Article
Google Scholar
Chen C-h, Torrents A, Kulinsky L, Nelson RD, Madou MJ, Valdevit L, LaRue JC (2011) Mechanical characterizations of cast Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)/Polyvinyl Alcohol thin films. Synth Met 161(21–22):2259–2267. https://doi.org/10.1016/j.synthmet.2011.08.031
CAS
Article
Google Scholar
Chen C, Zhang T, Zhang Q, Feng Z, Zhu C, Yu Y, Li K, Zhao M, Yang J, Liu J, Sun D (2015) Three-dimensional BC/PEDOT composite nanofibers with high performance for electrode-cell interface. ACS Appl Mater Interfaces 7(51):28244–28253. https://doi.org/10.1021/acsami.5b07273
CAS
Article
PubMed
Google Scholar
Cucchi I, Boschi A, Arosio C, Bertini F, Freddi G, Catellani M (2009) Bio-based conductive composites: preparation and properties of polypyrrole (PPy)-coated silk fabrics. Synth Met 159(3–4):246–253. https://doi.org/10.1016/J.SYNTHMET.2008.09.012
CAS
Article
Google Scholar
de Carvalho RA, Veronese G, Carvalho AJF, Barbu E, Amaral AC, Trovatti E (2016) The potential of TEMPO-oxidized nanofibrillar cellulose beads for cell delivery applications. Cellulose 23(6):3399–3405. https://doi.org/10.1007/s10570-016-1063-2
CAS
Article
Google Scholar
Dias OAT, Konar S, Leao AL, Sain M (2019) Flexible electrically conductive films based on nanofibrillated cellulose and polythiophene prepared via oxidative polymerization. Carbohydr Polym 220:79–85. https://doi.org/10.1016/j.carbpol.2019.05.057
CAS
Article
PubMed
Google Scholar
Elschner A, Kirchmeyer S, Lövenich W, Merker U, Reuter K (2010) PEDOT: principles and applications of an intrinsically conductive polymer. https://doi.org/10.1201/b10318
Feng Y, Zhang X, Shen Y, Yoshino K, Feng W (2012) A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr Polym 87(1):644–649. https://doi.org/10.1016/j.carbpol.2011.08.039
CAS
Article
PubMed
Google Scholar
Figueiredo ARP, Vilela C, Neto CP, Silvestre AJD, Freire CSR (2014) Bacterial cellulose-based nanocomposites- roadmap for innovative materials. Nanocellul Polym Nanocompos Fundam Appl. https://doi.org/10.1002/9781118872246.ch2
Article
Google Scholar
Flynn CN, Byrne CP, Meenan BJ (2013) Surface modification of cellulose via atmospheric pressure plasma processing in air and ammonia–nitrogen gas. Surf Coat Technol 233:108–118. https://doi.org/10.1016/j.surfcoat.2013.04.007
CAS
Article
Google Scholar
Foresti ML, Vazquez A, Boury B (2017) Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: a review of recent advances. Carbohydr Polym 157:447–467. https://doi.org/10.1016/j.carbpol.2016.09.008
CAS
Article
PubMed
Google Scholar
Freitas F, Alves VD, Reis MA (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29(8):388–398. https://doi.org/10.1016/j.tibtech.2011.03.008
CAS
Article
PubMed
Google Scholar
French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896. https://doi.org/10.1007/s10570-013-0030-4
CAS
Article
Google Scholar
Greczynski G, Hultman L (2020) X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Prog Mater Sci 107:100591. https://doi.org/10.1016/j.pmatsci.2019.100591
CAS
Article
Google Scholar
Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32(8–9):876–921. https://doi.org/10.1016/j.progpolymsci.2007.05.012
CAS
Article
Google Scholar
He W, Zhang X, Yu C, Huang D, Li Y (2015) Synthesis of bamboo/polyaniline composites by in situ polymerization and their characteristics. BioResources. https://doi.org/10.15376/BIORES.10.2.2969-2981
Article
Google Scholar
Hestrin S, Aschner M, Mager J (1947) Synthesis of cellulose by resting cells of Acetobacter xylinum. Nature 159(4028):64. https://doi.org/10.1038/159064a0
CAS
Article
PubMed
Google Scholar
Hu W, Chen S, Yang Z, Liu L, Wang H (2011) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115(26):8453–8457. https://doi.org/10.1021/jp204422v
CAS
Article
PubMed
Google Scholar
Humpolicek P, Kasparkova V, Pachernik J, Stejskal J, Bober P, Capakova Z, Radaszkiewicz KA, Junkar I, Lehocky M (2018) The biocompatibility of polyaniline and polypyrrole: a comparative study of their cytotoxicity, embryotoxicity and impurity profile. Mater Sci Eng C Mater Biol Appl 91:303–310. https://doi.org/10.1016/j.msec.2018.05.037
CAS
Article
PubMed
Google Scholar
Johnston JH, Moraes J, Borrmann T (2005) Conducting polymers on paper fibres. Synth Met 153(1–3):65–68. https://doi.org/10.1016/j.synthmet.2005.07.138
CAS
Article
Google Scholar
Khan S, Ul-Islam M, Khattak WA, Ullah MW, Park JK (2015) Bacterial cellulose-poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) composites for optoelectronic applications. Carbohydr Polym 127:86–93. https://doi.org/10.1016/j.carbpol.2015.03.055
CAS
Article
PubMed
Google Scholar
Khan S, Ul-Islam M, Ikram M, Ullah MW, Israr M, Subhan F, Kim Y, Jang JH, Yoon S, Park JK (2016) Three-dimensionally microporous and highly biocompatible bacterial cellulose–gelatin composite scaffolds for tissue engineering applications. RSC Adv 6(112):110840–110849. https://doi.org/10.1039/c6ra18847h
CAS
Article
Google Scholar
Kim SH, Lee CM, Kafle K (2013) Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J Chem Eng 30(12):2127–2141. https://doi.org/10.1007/s11814-013-0162-0
CAS
Article
Google Scholar
Kvarnström C, Neugebauer H, Blomquist S, Ahonen HJ, Kankare J, Ivaska A (1999) In situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene). Electrochim Acta 44(16):2739–2750. https://doi.org/10.1016/s0013-4686(98)00405-8
Article
Google Scholar
Lee B-H, Kim H-J, Yang H-S (2012a) Polymerization of aniline on bacterial cellulose and characterization of bacterial cellulose/polyaniline nanocomposite films. Curr Appl Phys 12(1):75–80. https://doi.org/10.1016/j.cap.2011.04.045
Article
Google Scholar
Lee H-J, Chung T-J, Kwon H-J, Kim H-J, Tze WTY (2012b) Fabrication and evaluation of bacterial cellulose-polyaniline composites by interfacial polymerization. Cellulose 19(4):1251–1258. https://doi.org/10.1007/s10570-012-9705-5
CAS
Article
Google Scholar
Lee Y-Y, Choi GM, Lim S-M, Cho J-Y, Choi I-S, Nam KT, Joo Y-C (2016) Growth mechanism of strain-dependent morphological change in PEDOT:PSS Films. Sci Rep 6:25332. https://doi.org/10.1038/srep25332
CAS
Article
PubMed
PubMed Central
Google Scholar
Liang H-W, Guan Q-F, Zhu Z, Song L-T, Yao H-B, Lei X, Yu S-H (2012) Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Mater 4(6):e19–e19. https://doi.org/10.1038/am.2012.34
CAS
Article
Google Scholar
Liebner F, Aigner N, Schimper C, Potthast A, Rosenau T (2012) Bacterial cellulose aerogels: from lightweight dietary food to functional materials. 1107: 57–74. https://doi.org/10.1021/bk-2012-1107.ch004
Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156(1):76–81. https://doi.org/10.1016/j.molliq.2010.04.016
CAS
Article
Google Scholar
Marins JA, Soares BG, Dahmouche K, Ribeiro SJL, Barud H, Bonemer D (2011) Structure and properties of conducting bacterial cellulose-polyaniline nanocomposites. Cellulose 18(5):1285–1294. https://doi.org/10.1007/s10570-011-9565-4
CAS
Article
Google Scholar
McKenna BA, Mikkelsen D, Wehr JB, Gidley MJ, Menzies NW (2009) Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by Gluconacetobacter xylinus strain ATCC 53524. Cellulose 16(6):1047–1055. https://doi.org/10.1007/s10570-009-9340-y
CAS
Article
Google Scholar
Müller D, Mandelli JS, Marins JA, Soares BG, Porto LM, Rambo CR, Barra GMO (2012) Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC). Cellulose 19(5):1645–1654. https://doi.org/10.1007/s10570-012-9754-9
CAS
Article
Google Scholar
Müller D, Cercená R, Gutiérrez Aguayo AJ, Porto LM, Rambo CR, Barra GMO (2016) Flexible PEDOT-nanocellulose composites produced by in situ oxidative polymerization for passive components in frequency filters. J Mater Sci Mater Electron 27(8):8062–8067. https://doi.org/10.1007/s10854-016-4804-y
CAS
Article
Google Scholar
Muller D, Rambo CR, Porto LM, Schreiner WH, Barra GM (2013) Structure and properties of polypyrrole/bacterial cellulose nanocomposites. Carbohydr Polym 94(1):655–662. https://doi.org/10.1016/j.carbpol.2013.01.041
CAS
Article
PubMed
Google Scholar
Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose I(alpha) from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306. https://doi.org/10.1021/ja037055w
CAS
Article
PubMed
Google Scholar
Omar SNI, Zainal Ariffin Z, Zakaria A, Safian MF, Halim MIA, Ramli R, Sofian ZM, Zulkifli MF, Aizamddin MF, Mahat MM (2020) Electrically conductive fabric coated with polyaniline: physicochemical characterisation and antibacterial assessment. Emerg Mater 3(4):469–477. https://doi.org/10.1007/s42247-019-00062-4
CAS
Article
Google Scholar
Pattanashetti NA, Heggannavar GB, Kariduraganavar MY (2017) Smart biopolymers and their biomedical applications. Procedia Manuf 12:263–279. https://doi.org/10.1016/j.promfg.2017.08.030
Article
Google Scholar
Pertile RAN, Andrade FK, Alves C, Gama M (2010) Surface modification of bacterial cellulose by nitrogen-containing plasma for improved interaction with cells. Carbohydr Polym 82(3):692–698. https://doi.org/10.1016/j.carbpol.2010.05.037
CAS
Article
Google Scholar
Pham TTH, Vadanan SV, Lim S (2020) Enhanced rheological properties and conductivity of bacterial cellulose hydrogels and aerogels through complexation with metal ions and PEDOT/PSS. Cellulose 27(14):8075–8086. https://doi.org/10.1007/s10570-020-03284-6
CAS
Article
Google Scholar
Qin Z, Ji L, Yin X, Zhu L, Lin Q, Qin J (2014) Synthesis and characterization of bacterial cellulose sulfates using a SO(3)/pyridine complex in DMAc/LiCl. Carbohydr Polym 101:947–953. https://doi.org/10.1016/j.carbpol.2013.09.068
CAS
Article
PubMed
Google Scholar
Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, Minor L (2004) Cell viability assays, eli lilly & company and the national center for advancing translational sciences, Bethesda (MD). https://www.ncbi.nlm.nih.gov/books/NBK144065/
Ruka DR, Simon GP, Dean KM (2014) Bacterial cellulose and its use in renewable composites. Nanocellul Polym Nanocompos Fundam Appl. https://doi.org/10.1002/9781118872246.ch4
Article
Google Scholar
Schaarschmidt A, Farah AA, Aby A, Helmy AS (2009) Influence of nonadiabatic annealing on the morphology and molecular structure of PEDOT-PSS films. J Phys Chem B 113(28):9352–9355. https://doi.org/10.1021/jp904147v
CAS
Article
PubMed
Google Scholar
Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text Res J 29(10):786–794. https://doi.org/10.1177/004051755902901003
CAS
Article
Google Scholar
Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98(2):1585–1598. https://doi.org/10.1016/j.carbpol.2013.08.018
CAS
Article
PubMed
Google Scholar
Sriprachuabwong C, Karuwan C, Wisitsorrat A, Phokharatkul D, Lomas T, Sritongkham P, Tuantranont A (2012) Inkjet-printed graphene-PEDOT: PSS modified screen printed carbon electrode for biochemical sensing. J Mater Chem 22(12):5478. https://doi.org/10.1039/c2jm14005e
CAS
Article
Google Scholar
Tanpichai S, Quero F, Nogi M, Yano H, Young RJ, Lindstrom T, Sampson WW, Eichhorn SJ (2012) Effective Young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromol 13(5):1340–1349. https://doi.org/10.1021/bm300042t
CAS
Article
Google Scholar
Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. ITT Rayonier Inc., Shelton, WA
Google Scholar
Ul-Islam M, Shah N, Ha JH, Park JK (2011) Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose. Korean J Chem Eng 28(8):1736–1743. https://doi.org/10.1007/s11814-011-0042-4
CAS
Article
Google Scholar
Ullah H, Santos HA, Khan T (2016) Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23(4):2291–2314. https://doi.org/10.1007/s10570-016-0986-y
CAS
Article
Google Scholar
Ummartyotin S, Manuspiya H (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Renew Sust Energ Rev 41:402–412. https://doi.org/10.1016/j.rser.2014.08.050
CAS
Article
Google Scholar
Van de Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Test 21(4):433–442. https://doi.org/10.1016/s0142-9418(01)00107-6
Article
Google Scholar
Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, Part 1: process optimization. J Appl Polym Sci 113(2):1270–1275. https://doi.org/10.1002/app.30072
CAS
Article
Google Scholar
Wang GF, Tao XM, Xin JH, Fei B (2009) Modification of conductive polymer for polymeric anodes of flexible organic light-emitting diodes. Nanoscale Res Lett 4(7):613–617. https://doi.org/10.1007/s11671-009-9288-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Wu J, Zheng Y, Wen X, Lin Q, Chen X, Wu Z (2014) Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo. Biomed Mater 9(3):035005. https://doi.org/10.1088/1748-6041/9/3/035005
CAS
Article
PubMed
Google Scholar
Xiong B, Zhao P, Hu K, Zhang L, Cheng G (2014) Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose 21(3):1183–1192. https://doi.org/10.1007/s10570-014-0221-7
CAS
Article
Google Scholar
Xu Y, Wang Y, Liang J, Huang Y, Ma Y, Wan X, Chen Y (2009) A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res 2(4):343–348. https://doi.org/10.1007/s12274-009-9032-9
CAS
Article
Google Scholar
Yates MR, Barlow CY (2013) Life cycle assessments of biodegradable, commercial biopolymers—A critical review. Resour Conserv Recycl 78:54–66. https://doi.org/10.1016/j.resconrec.2013.06.010
Article
Google Scholar
Yogeswaran N, Dang W, Navaraj WT, Shakthivel D, Khan S, Polat EO, Gupta S, Heidari H, Kaboli M, Lorenzelli L, Cheng G, Dahiya R (2015) New materials and advances in making electronic skin for interactive robots. Adv Robot 29(21):1359–1373. https://doi.org/10.1080/01691864.2015.1095653
Article
Google Scholar
Yoon SH, Jin HJ, Kook MC, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromol 7(4):1280–1284. https://doi.org/10.1021/bm050597g
CAS
Article
Google Scholar
Zhou T, Chen D, Jiu J, Nge TT, Sugahara T, Nagao S, Koga H, Nogi M, Suganuma K, Wang X, Liu X, Cheng P, Wang T, Xiong D (2013) Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes. EXPRESS Polym Lett 7(9):756–766. https://doi.org/10.3144/expresspolymlett.2013.73
CAS
Article
Google Scholar