Al-Gharrawi MZ, Wang J, Bousfield DW (2021) Improving recycling of polyethylene-coated paperboard with a nanofibrillated cellulose layer. BioResources 16:3285–3297
CAS
Article
Google Scholar
Amini E, Hafez I, Tajvidi M, Bousfield DW (2020) Cellulose and lignocellulose nanofibril suspensions and films: a comparison. Carbohydr Polym 250:117011. https://doi.org/10.1016/j.carbpol.2020.117011
CAS
Article
PubMed
Google Scholar
Amini E, Tajvidi M, Gardner DJ, Bousfield DW (2017) Utilization of cellulose nanofibrils as a binder for particleboard manufacture. BioResources 12:4093–4110
CAS
Article
Google Scholar
Aulin C, Ahok S, Josefsson P et al (2009) Nanoscale cellulose films with different crystallinities and mesostructures - their surface properties and interaction with water. Langmuir 25:7675–7685. https://doi.org/10.1021/la900323n
CAS
Article
PubMed
Google Scholar
Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574. https://doi.org/10.1007/s10570-009-9393-y
CAS
Article
Google Scholar
Bilodeau & Paradis (2018) U.S. Patent No. 9,988,762. Washington, DC: U.S. Patent and Trademark Office
Börcsök Z, Pásztory Z (2020) The role of lignin in wood working processes using elevated temperatures: an abbreviated literature survey. Eur J Wood Wood Prod. https://doi.org/10.1007/s00107-020-01637-3
Article
Google Scholar
Budd J, Herrington TM (1989) The adsorption of aluminium from aqueous solution by cellulose fibres. Coll Surf 41:363–384. https://doi.org/10.1016/0166-6622(89)80066-6
CAS
Article
Google Scholar
Chen Y, Fan D, Han Y et al (2018) Effect of high residual lignin on the properties of cellulose nanofibrils/films. Cellulose 25:6421–6431. https://doi.org/10.1007/s10570-018-2006-x
CAS
Article
Google Scholar
Deshwal GK, Panjagari NR, Alam T (2019) An overview of paper and paper based food packaging materials: health safety and environmental concerns. J Food Sci Technol 56:4391–4403
Article
Google Scholar
Dhali K, Ghasemlou M, Daver F et al (2021) A review of nanocellulose as a new material towards environmental sustainability. Sci Total Environ 775:145871. https://doi.org/10.1016/j.scitotenv.2021.145871
CAS
Article
PubMed
Google Scholar
Diop CIK, Tajvidi M, Bilodeau MA et al (2017a) Evaluation of the incorporation of lignocellulose nanofibrils as sustainable adhesive replacement in medium density fiberboards. Ind Crops Prod 109:27–36. https://doi.org/10.1016/j.indcrop.2017.08.004
CAS
Article
Google Scholar
Diop CIK, Tajvidi M, Bilodeau MA et al (2017b) Isolation of lignocellulose nanofibrils (LCNF) and application as adhesive replacement in wood composites: example of fiberboard. Cellulose 24:3037–3050. https://doi.org/10.1007/s10570-017-1320-z
CAS
Article
Google Scholar
do Lago RC, de Oliveira ALM, de Amorim dos Santos A et al (2021) Addition of wheat straw nanofibrils to improve the mechanical and barrier properties of cassava starch–based bionanocomposites. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2021.113816
European Parliament (2018) Plastic oceans: MEPs back EU ban on throwaway plastics by 2021 [Press Release]. Eur Parliam News Press room 30–33
Fein K, Bousfield DW, Gramlich WM (2021) Processing effects on structure, strength, and barrier properties of refiner-produced cellulose nanofibril layers. ACS Appl Polym Mater 3:3666–3678. https://doi.org/10.1021/acsapm.1c00620
CAS
Article
Google Scholar
Ferrer A, Quintana E, Filpponen I et al (2012) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19:2179–2193. https://doi.org/10.1007/s10570-012-9788-z
CAS
Article
Google Scholar
Fortea-Verdejo M, Lee K-Y, Zimmermann T, Bismarck A (2016) Upgrading flax nonwovens: Nanocellulose as binder to produce rigid and robust flax fibre preforms. Compos Part A Appl Sci Manuf 83:63–71. https://doi.org/10.1016/j.compositesa.2015.11.021
CAS
Article
Google Scholar
Ghasemi S, Tajvidi M, Bousfield DW et al (2017) Dry-spun neat cellulose nanofibril filaments: influence of drying temperature and nanofibril structure on filament properties. Polymers (Basel). 9
Hasan I, Wang J, Tajvidi M (2021) Tuning physical, mechanical and barrier properties of cellulose nanofibril films through film drying techniques coupled with thermal compression. Cellulose. https://doi.org/10.1007/s10570-021-04269-9
Article
Google Scholar
Hossain R, Tajvidi M, Bousfield D, Gardner DJ (2021) Multi-layer oil-resistant food serving containers made using cellulose nanofiber coated wood flour composites. Carbohydr Polym 267:118221. https://doi.org/10.1016/j.carbpol.2021.118221
CAS
Article
PubMed
Google Scholar
Hossen MR, Dadoo N, Holomakoff DG et al (2018) Wet stable and mechanically robust cellulose nanofibrils (CNF) based hydrogel. Polymer (guildf) 151:231–241. https://doi.org/10.1016/j.polymer.2018.07.016
CAS
Article
Google Scholar
Hu Z, Zhai R, Li J et al (2017) Preparation and characterization of nanofibrillated cellulose from bamboo fiber via ultrasonication assisted by repulsive effect. Int J Polym Sci 2017:9850814. https://doi.org/10.1155/2017/9850814
CAS
Article
Google Scholar
Hubbe MA, Ferrer A, Tyagi P et al (2017) Nanocellulose in thin films, coatings, and plies for packaging applications: a review. BioResources 12:2143–2233
CAS
Google Scholar
Iewkittayakorn J, Khunthongkaew P, Wongnoipla Y et al (2020) Biodegradable plates made of pineapple leaf pulp with biocoatings to improve water resistance. J Mater Res Technol 9:5056–5066. https://doi.org/10.1016/j.jmrt.2020.03.023
CAS
Article
Google Scholar
Jiang LX, Yang Q et al (2019) Effects of residual lignin on composition, structure and properties of mechanically defibrillated cellulose fibrils and films. Cellulose 26:1577–1593. https://doi.org/10.1007/s10570-018-02229-4
Article
Google Scholar
Kaelble DH (1970) Dispersion-polar surface tension properties of organic solids. J Adhes 2:66–81. https://doi.org/10.1080/0021846708544582
CAS
Article
Google Scholar
Kato., Isogai A, Onabe F, (2000) Intrafiber distribution of aluminum components in alum-treated handsheets. J Wood Sci 46:75–78. https://doi.org/10.1007/BF00779557
Article
Google Scholar
Kato IA, Onabe F (2000) Studies on interactions between aluminum compounds and cellulosic fibers in water by means of 27Al-NMR. J Wood Sci 46:310–316. https://doi.org/10.1007/BF00766222
CAS
Article
Google Scholar
Kato IA, Onabe F (1999) Factors influencing retention behavior of aluminum compounds on handsheets. J Wood Sci 45:154–160. https://doi.org/10.1007/BF01192333
CAS
Article
Google Scholar
Khairuddin PC, Aningtyas S (2019) Preparation and properties of paper coating based bilayer of starch and shellac composites. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1153/1/012092
Article
Google Scholar
Kojima Y, Isa A, Kobori H et al (2014) Evaluation of binding effects in wood flour board containing ligno-cellulose nanofibers. Materials (basel) 6:6853–6864. https://doi.org/10.3390/ma7096853
Article
Google Scholar
Kojima Y, Minamino J, Isa A et al (2013) Binding effect of cellulose nanofibers in wood flour board. J Wood Sci 59:396–401. https://doi.org/10.1007/s10086-013-1348-0
CAS
Article
Google Scholar
Korbelyiova L, Malefors C, Lalander C et al (2021) Paper vs leaf: carbon footprint of single-use plates made from renewable materials. Sustain Prod Consum 25:77–90. https://doi.org/10.1016/j.spc.2020.08.004
Article
Google Scholar
Lavoine N, Bras J, Desloges I (2014) Mechanical and barrier properties of cardboard and 3D packaging coated with microfibrillated cellulose. J Appl Polym Sci 131:1–11. https://doi.org/10.1002/app.40106
CAS
Article
Google Scholar
Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764. https://doi.org/10.1016/j.carbpol.2012.05.026
CAS
Article
PubMed
Google Scholar
Li Z, Rabnawaz M (2018) Fabrication of food-safe water-resistant paper coatings using a melamine primer and polysiloxane outer layer. ACS Omega 3:11909–11916
CAS
Article
Google Scholar
Mazhari Mousavi SM, Afra E, Tajvidi M et al (2017) Cellulose nanofiber/carboxymethyl cellulose blends as an efficient coating to improve the structure and barrier properties of paperboard. Cellulose 24:3001–3014. https://doi.org/10.1007/s10570-017-1299-5
CAS
Article
Google Scholar
Nair SS, Yan N (2015) Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments. Cellulose 22:3137–3150. https://doi.org/10.1007/s10570-015-0737-5
CAS
Article
Google Scholar
Nair SS, Zhu JY, Deng Y, Ragauskas AJ (2014) Characterization of cellulose nanofibrillation by micro grinding. J Nanopart Res. https://doi.org/10.1007/s11051-014-2349-7
Article
Google Scholar
OECD (2020) PFASs and alternatives in food packaging (Paper and Paperboard) report on the commercial availability and current uses. 1–65
Ohno K (1999) Retention behavior of size and aluminum components in handsheets prepared in rosin soap size-alum systems. J Wood Sci 45:238–244. https://doi.org/10.1007/BF01177732
CAS
Article
Google Scholar
Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747. https://doi.org/10.1002/app.1969.070130815
CAS
Article
Google Scholar
Peresin MS, Kammiovirta K, Heikkinen H et al (2017) Understanding the mechanisms of oxygen diffusion through surface functionalized nanocellulose films. Carbohydr Polym 174:309–317. https://doi.org/10.1016/j.carbpol.2017.06.066
CAS
Article
PubMed
Google Scholar
Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18:127–134. https://doi.org/10.1007/s10570-010-9474-y
CAS
Article
Google Scholar
Rojas OJ, Hubbe MA (2004) The dispersion science of papermaking. J Dispers Sci Technol 25:713–732. https://doi.org/10.1081/DIS-200035485
CAS
Article
Google Scholar
Rojo E, Peresin MS, Sampson WW et al (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 17:1853–1866. https://doi.org/10.1039/c4gc02398f
CAS
Article
Google Scholar
Shimizu M, Saito T, Isogai A (2016) Water-resistant and high oxygen-barrier nanocellulose films with interfibrillar cross-linkages formed through multivalent metal ions. J Memb Sci 500:1–7. https://doi.org/10.1016/j.memsci.2015.11.002
CAS
Article
Google Scholar
Smook GA (2015) Handbook for pulp and paper technologists smook pdf
Solala I, Bordes R, Larsson A (2018) Water vapor mass transport across nanofibrillated cellulose films: effect of surface hydrophobization. Cellulose 25:347–356. https://doi.org/10.1007/s10570-017-1608-z
CAS
Article
Google Scholar
Tajvidi M, Gardner DJ, Bousfield DW (2016) Cellulose nanomaterials as binders: laminate and particulate systems. J Renew Mater 4:365–376. https://doi.org/10.7569/JRM.2016.634103
CAS
Article
Google Scholar
Tappi (2009) Water absorptiveness of sized ( non-bibulous ) paper , paperboard , and corrugated fiberboard ( Cobb test ). Tappi 1–6
Tappi (1996) Grease resistance test for paper and paperboard
Tarrés Q, Oliver-Ortega H, Ferreira PJ et al (2018) Towards a new generation of functional fiber-based packaging: cellulose nanofibers for improved barrier, mechanical and surface properties. Cellulose 25:683–695. https://doi.org/10.1007/s10570-017-1572-7
CAS
Article
Google Scholar
Tayeb AH, Amini E, Ghasemi S, Tajvidi M (2018) Cellulose nanomaterials-binding properties and applications: a review. Molecules 23:1–24. https://doi.org/10.3390/molecules23102684
CAS
Article
Google Scholar
Tayeb AH, Tajvidi M (2019) Sustainable barrier system via self-assembly of colloidal montmorillonite and cross-linking resins on nanocellulose interfaces. ACS Appl Mater Interfaces 11:1604–1615. https://doi.org/10.1021/acsami.8b16659
CAS
Article
Google Scholar
Tayeb AH, Tajvidi M, Bousfield D (2020) Paper-based oil barrier packaging using lignin-containing cellulose nanofibrils. Molecules. https://doi.org/10.3390/molecules25061344
Article
PubMed
PubMed Central
Google Scholar
Triantafillopoulos N, Koukoulas AA (2020) The future of single-use paper coffee cups: current progress and outlook. BioResources 15:7260–7287
Article
Google Scholar
Tyagi P, Gutierrez JN, Nathani V et al (2021) Hydrothermal and mechanically generated hemp hurd nanofibers for sustainable barrier coatings/films. Ind Crops Prod 168:113582. https://doi.org/10.1016/j.indcrop.2021.113582
CAS
Article
Google Scholar
Wu A, March L, Zheng X et al (2020) Enhanced reader.pdf. Nature 388:1–14
CAS
Google Scholar
Xu Y, Kuang Y, Salminen P, Chen G (2016) The influence of nano-fibrillated cellulose as a coating component in paper coating. BioResources 11:4342–4352
CAS
Google Scholar
Yang Q, Takeuchi M, Saito T, Isogai A (2014) Formation of nanosized Islands of Dialkyl β-Ketoester bonds for efficient hydrophobization of a cellulose film surface. Langmuir 30:8109–8118. https://doi.org/10.1021/la501706t
CAS
Article
PubMed
Google Scholar
Yook S, Park H, Park H et al (2020) Barrier coatings with various types of cellulose nanofibrils and their barrier properties. Cellulose. https://doi.org/10.1007/s10570-020-03061-5
Article
Google Scholar
Yousefi Shivyari N, Tajvidi M, Bousfield DW, Gardner DJ (2016) Production and characterization of laminates of paper and cellulose nanofibrils. ACS Appl Mater Interfaces 8:25520–25528. https://doi.org/10.1021/acsami.6b07655
CAS
Article
PubMed
Google Scholar
Yuhui M (2018) Problems and resolutions in dealing with waste disposable paper cups. Sci Prog 101:1–7. https://doi.org/10.3184/003685017X15129981721365
Article
Google Scholar
Zhang N, Xu J, Gao X et al (2017) Factors affecting water resistance of alginate/gellan blend films on paper cups for hot drinks. Carbohydr Polym 156:435–442. https://doi.org/10.1016/j.carbpol.2016.08.101
CAS
Article
PubMed
Google Scholar
Zhang W, Xiao H, Qian L (2014) Enhanced water vapour barrier and grease resistance of paper bilayer-coated with chitosan and beeswax. Carbohydr Polym 101:401–406. https://doi.org/10.1016/j.carbpol.2013.09.097
CAS
Article
PubMed
Google Scholar